虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

代码<b>分析</b>

  • 汉诺塔!!! Simulate the movement of the Towers of Hanoi puzzle Bonus is possible for using animation

    汉诺塔!!! Simulate the movement of the Towers of Hanoi puzzle Bonus is possible for using animation eg. if n = 2 A→B A→C B→C if n = 3 A→C A→B C→B A→C B→A B→C A→C

    标签: the animation Simulate movement

    上传时间: 2017-02-11

    上传用户:waizhang

  • 将魔王的语言抽象为人类的语言:魔王语言由以下两种规则由人的语言逐步抽象上去的:α-〉β1β2β3…βm ;θδ1δ2…-〉θδnθδn-1…θδ1 设大写字母表示魔王的语言

    将魔王的语言抽象为人类的语言:魔王语言由以下两种规则由人的语言逐步抽象上去的:α-〉β1β2β3…βm ;θδ1δ2…-〉θδnθδn-1…θδ1 设大写字母表示魔王的语言,小写字母表示人的语言B-〉tAdA,A-〉sae,eg:B(ehnxgz)B解释为tsaedsaeezegexenehetsaedsae对应的话是:“天上一只鹅地上一只鹅鹅追鹅赶鹅下鹅蛋鹅恨鹅天上一只鹅地上一只鹅”。(t-天d-地s-上a-一只e-鹅z-追g-赶x-下n-蛋h-恨)

    标签: 语言 抽象 字母

    上传时间: 2013-12-19

    上传用户:aix008

  • 【问题描述】 在一个N*N的点阵中

    【问题描述】 在一个N*N的点阵中,如N=4,你现在站在(1,1),出口在(4,4)。你可以通过上、下、左、右四种移动方法,在迷宫内行走,但是同一个位置不可以访问两次,亦不可以越界。表格最上面的一行加黑数字A[1..4]分别表示迷宫第I列中需要访问并仅可以访问的格子数。右边一行加下划线数字B[1..4]则表示迷宫第I行需要访问并仅可以访问的格子数。如图中带括号红色数字就是一条符合条件的路线。 给定N,A[1..N] B[1..N]。输出一条符合条件的路线,若无解,输出NO ANSWER。(使用U,D,L,R分别表示上、下、左、右。) 2 2 1 2 (4,4) 1 (2,3) (3,3) (4,3) 3 (1,2) (2,2) 2 (1,1) 1 【输入格式】 第一行是数m (n < 6 )。第二行有n个数,表示a[1]..a[n]。第三行有n个数,表示b[1]..b[n]。 【输出格式】 仅有一行。若有解则输出一条可行路线,否则输出“NO ANSWER”。

    标签: 点阵

    上传时间: 2014-06-21

    上传用户:llandlu

  • linux内核中ip部分工作原理

    linux内核中ip部分工作原理,和代码实现分析

    标签: linux 内核 工作原理

    上传时间: 2017-09-20

    上传用户:lizhen9880

  • 离散实验 一个包的传递 用warshall

     实验源代码 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("请输入矩阵第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可传递闭包关系矩阵是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元关系的可传递闭包\n"); void warshall(int,int); int k , n; printf("请输入矩阵的行数 i: "); scanf("%d",&k); 四川大学实验报告 printf("请输入矩阵的列数 j: "); scanf("%d",&n); warshall(k,n); } 

    标签: warshall 离散 实验

    上传时间: 2016-06-27

    上传用户:梁雪文以

  • 道理特分解法

    #include "iostream" using namespace std; class Matrix { private: double** A; //矩阵A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //为向量b分配空间并初始化为0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //为向量A分配空间并初始化为0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析构中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"请输入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"请输入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"个:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分别求得U,L的第一行与第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分别求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"计算U得:"<<endl; U.Disp(); cout<<"计算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; } 

    标签: 道理特分解法

    上传时间: 2018-05-20

    上传用户:Aa123456789

  • 基于MIPI+CSI-2协议的摄像头芯片数据发送端接口设计

    随着手机摄像头和数码相机性能的提升,增加摄像头设备到平台处理器之间的传输带宽变越来越有必要,传统的DVP接口已经不能适应现在的科技发展。在这样的大形势下MIPI联盟应运而生,它制定了一个通用的标准来规范高性能移动终端的接口,而它的子协议MIPI CSI-2则完美的解决了摄像头设备与平台处理器之间高速通信的难题,提供了一种标准化、强大、可靠、低功耗的传输方式。MPI CSI-2接口采用差分信号线,确保了高速数据在传输时不易受到外界的干扰,而其采用的ECC编码和CRC编码则从一定程度上减少了个别错误数据对于整体数据的影响,又由于自身处于MIPI大家族协议之中,它自身也很容易兼容应用MIPI家族协议的其他设备。本文详细的介绍了MIPI CSI-2协议数字部分RTL的实现,模拟部分的实现,以及后续的测试分析。在设计中RTL的设计、纠错以及模块的时序分析在Linux平台上进行。而模拟部分的实现以及整体的动态测试在FPGA平台上进行。通过这样的分工可以更全面的发挥两个平台的长处,更具体的来说,在Linux阶段的设计时充分的利用了modelsim与verdi配合的优势,从而更好的设计代码、分析代码和测试代码。而在综合时又利用Design Compile与Prime time充分的对设计做了资源分析和时序分析,保证了设计的质量。而在FPGA阶段设计时,充分的利用了FPGA灵活而且可以动态测试的优势来验证模块的正确性,此外在FPGA上还可以使用商用接收端来接收最后产生的MIPI数据,这样的验证方法更权威也更有说服力。在设计方法上,在数字部分的RTL设计中充分的应用了模块化的思想,不仅实现了协议的要求,而且灵活的适应了MIPI CSI-2协议在实际应用时的一些变通的需求。而在模拟部分的物理层设计中则大胆的做了尝试和创新,成功的在没有先例参照的情况下自主设计了FPGA下的物理层部分,并且最后成功的被商用接收端验证。总的来说在整个设计过程中遇到了阻碍和很多难题,但是经过不懈的努力最终克服了技术上的种种困难,最终也获得了阶段性的成果和自身的技术提高。

    标签: mipi 摄像头 接口

    上传时间: 2022-05-30

    上传用户:kingwide

  • 安森美车规级1080P图像传感器AR0231手册

    AR0231AT7C00XUEA0-DRBR(RGB滤光)安森美半导体推出采用突破性减少LED闪烁 (LFM)技术的新的230万像素CMOS图像传感器样品AR0231AT,为汽车先进驾驶辅助系统(ADAS)应用确立了一个新基准。新器件能捕获1080p高动态范围(HDR)视频,还具备支持汽车安全完整性等级B(ASIL B)的特性。LFM技术(专利申请中)消除交通信号灯和汽车LED照明的高频LED闪烁,令交通信号阅读算法能于所有光照条件下工作。AR0231AT具有1/2.7英寸(6.82 mm)光学格式和1928(水平) x 1208(垂直)有源像素阵列。它采用最新的3.0微米背照式(BSI)像素及安森美半导体的DR-Pix™技术,提供双转换增益以在所有光照条件下提升性能。它以线性、HDR或LFM模式捕获图像,并提供模式间的帧到帧情境切换。 AR0231AT提供达4重曝光的HDR,以出色的噪声性能捕获超过120dB的动态范围。AR0231AT能同步支持多个摄相机,以易于在汽车应用中实现多个传感器节点,和通过一个简单的双线串行接口实现用户可编程性。它还有多个数据接口,包括MIPI(移动产业处理器接口)、并行和HiSPi(高速串行像素接口)。其它关键特性还包括可选自动化或用户控制的黑电平控制,支持扩频时钟输入和提供多色滤波阵列选择。封装和现状:AR0231AT采用11 mm x 10 mm iBGA-121封装,现提供工程样品。工作温度范围为-40℃至105℃(环境温度),将完全通过AEC-Q100认证。

    标签: 图像传感器

    上传时间: 2022-06-27

    上传用户:XuVshu

  • 图像检索的代码b

    图像检索的代码b

    标签: 图像检索 代码

    上传时间: 2015-02-04

    上传用户:奇奇奔奔

  • 图形学B样条曲线代码

    图形学B样条曲线代码

    标签: 图形 代码

    上传时间: 2013-12-18

    上传用户:jiahao131