虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

人工鱼群算法

  • 计算科学引论的一些算法和课件

    计算科学引论的一些算法和课件,包含基因算法和人工神经网络

    标签: 计算 算法

    上传时间: 2017-09-09

    上传用户:lgnf

  • 人工神经网络c语言实现

    人工神经网络c语言实现,采用了神经网络最常用的bp算法

    标签: 人工神经网络 c语言

    上传时间: 2013-12-02

    上传用户:caozhizhi

  • 人工生命模拟

    基于C语言的遗传算法实现人工模拟与仿真,原作者为同济大学的王小平

    标签: 基于C语言

    上传时间: 2015-05-04

    上传用户:dujia90

  • 人工神经网络

    人工神经网络,希望对大家有所帮助,关于算法和介绍

    标签: 人工神经网络

    上传时间: 2015-06-01

    上传用户:sxdz86

  • 遗传算法GA

    遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。

    标签: 算法

    上传时间: 2016-05-09

    上传用户:2017我们结婚吧

  • 基于人工神经网络实现智能机器人的避障轨迹控制

    基于人工神经网络实现智能机器人的避障轨迹控制摘 要:利用人工神经网络中的二级 BP网。模拟智能机器人的两控制参数(左 、右轮速)间的函数关系。实现避 障轨迹为圆弧或椭圆弧的轨迹控制 。并且通过调整椭圆长、短轴大小。能实现多个及多层障碍物的避障控制.该方法 的突出特点是方法简单、算法容易实现 。使机器人完成多个及多层避障动作时。不滞后于动态环境里其它机器人(障 碍物)位置的变化.在仿真实验中。取得了理想的效果. 关键词;BP神经网络I多个及多层避障控制I椭圆轨迹1 弓I言(Introduction) 在机器人中,避障轨迹的生成是一个重要的问 题.对于不确定的动态环境下的实时避障轨迹生成, 是较为困难的.有关这方面的研究,目前已有许多方 法.一些神经网络模型被设计出来,产生实时的轨迹 生成.文献113[23提供的神经网络模型产生的轨迹 生成仅能处理在静态环境下及假设空间中没有障碍 物的情况.[3]提供的神经网络模型,能为智能机器 人产生导航的避障轨迹,然而模型在计算上相当复 杂.文献[43提供了Hopfield神经网络模型,能在动 态环境下产生时实的避障轨迹生成,并在文献[5] 中,严格证明了因该方法生成的轨迹没有遭受局部 极小点逃离问题.并且文献[63用两个神经网络层叠 加起来,每层构造相似于[43中的网络结构.它是利 用第二层网络来发现下一个机器人位置的无监督模 型,然而它却加倍了计算量,尽管文献[4,6]提供的 方法能在动态环境下,产生时实避障轨迹,但都具有 较慢的运动速度,在快速变化的环境下不能恰当地 完成动作执行,因为机器人要比较好地完成避障动 作,必须不能滞后于障碍物动作变化

    标签: 神经网络 智能机器人

    上传时间: 2022-02-12

    上传用户:得之我幸78

  • 机器学习:人工神经网络

    人工神经网络提供了一种普遍且实用的方法从样例中学习值为实数、离散值或向量的函数反向传播算法,使用梯度下降来调节网络参数以最佳拟合由输入-输出对组成的训练集合人工神经网络对于训练数据中的错误健壮性很好人工神经网络已被成功应用到很多领域,例如视觉场景分析,语音识别,机器人控制神经网络学习对于逼近实数值、离散值或向量值的目标函数提供了一种健壮性很强的方法对于某些类型的问题,如学习解释复杂的现实世界中的传感器数据,人工神经网络是目前知道的最有效的学习方法反向传摇成功例子,学习识别手写字符,学习识别口语,学习识别人脸生物学动机ANN受到生物学的启发,生物的学习系统是由相互连接的神经元组成的异常复杂的网络。ANN由一系列简单的单元相互密集连接构成的,其中每一个单元有一定数量的实值输入,并产生单一的实数值输出人脑的构成,大约有1011个神经元,平均每一个与其他104个相连神经元的活性通常被通向其他神经元的连接激活或抑制最快的神经元转换时间比计算机慢很多,然而人脑能够以惊人的速度做出复杂度惊人的决策很多人推测,生物神经系统的信息处理能力一定得益于对分布在大量神经元上的信息表示的高度并行处理

    标签: 机器学习 神经网络

    上传时间: 2022-04-08

    上传用户:trh505

  • 基于遗传算法的BP神经网络的优化研究及MATLAB仿真

    随着人类社会的进步,科学技术的发展日新月异,模拟人脑神经网络的人工神经网络已取得了长足的发展。经过半个多世纪的发展,人工神经网络在计算机科学,人工智能,智能控制等方面得到了广泛的应用。当代社会是一个讲究效率的社会,科技更新领域也是如此。在人工神经网络研究领域,算法的优化显得尤为重要,对提高网络整体性能举足轻重.BP神经网络模型是目前应用最为广泛的一种神经网络模型,对于解决非线性复杂问题具有重要的意义。但是BP神经网络有其自身的一些不足(收敛速度慢和容易陷入局部极小值问题),在解决某些现实问题的时候显得力不从心。针对这个问题,本文利用遗传算法的并行全局搜索的优势,能够弥补BP网络的不足,为解决大规模复杂问题提供了广阔的前景。本文将遗传算法与BP网络有机地结合起来,提出了一种新的网络结构,在稳定性、学习性和效率方面都有了很大的提高。基于以上的研究目的,本文首先设计了BP神经网络结构,在此基础上,应用遗传算法进行优化,达到了加快收敛速度和全局寻优的效果。本文借助MATLAB平台,对算法的优化内容进行了仿真实验,得出的效果也符合期望值,实现了对BP算法优化的目的。关键词:生物神经网络:人工神经网络;BP网络;遗传算法;仿真随着电子计算机的问世及发展,人们试图去了解人的大脑,进而构造具有人类思维的智能计算机。在具有人脑逻辑推理延伸能力的计算机战胜人类棋手的同时,引发了人们对模拟人脑信息处理的人工神经网络的研究。1.1研究背景人工神经网络(Artificial Noural Networks,ANN)(注:简称为神经网络),是一种数学算法模型,能够对信息进行分布式处理,它模仿了动物的神经网络,是对动物神经网络的一种具体描述。这种网络依赖系统的复杂程度,通过调节内部大量节点之间的关系,最终实现信息处理的目的。人工神经网络可以通过对输入输出数据的分析学习,掌握输入与输出之间的潜在规则,能够对新数据进行分析计算,推算出输出结果,因为人工神经网络具有自适应和自学习的特性,这种学习适应的过程被称为“训练"。

    标签: 遗传算法 bp神经网络 matlab

    上传时间: 2022-06-16

    上传用户:jiabin

  • 人工神经网络理论、设计及应用_第2版

    本书系统地论述了人工神经网络的主要理论和设计基础,给出了大量应用实例,旨在使读者了解神经网络的发展背景和研究对象,理解和熟悉其基本原理和主要应用,掌握其结构模型和基本设计方法,为以后的深入研究和应用开发打下基础。作者连续11年为电气信息类专业研究生及本科高年级学生开设“人工神经网络理论与应用”课程,2002年在多次修改讲义和多项科研成果基础上形成本书的第一版。本书第二版对原书约1/3的内容进行了更新,对保留内容进行了修改。取材注意内容的典型性和先进性,编排注意内容的逻辑性,阐述注重物理概念的清晰性,举例与思考练习的安排注意了内容的实践性,常用神经网络及算法的介绍着重于实用性。

    标签: 人工神经网络

    上传时间: 2022-06-21

    上传用户:qingfengchizhu

  • 现代无线通信系统盲处理技术新进展基于智能算法

    《现代通信系统盲处理技术新进展---基于智能算法》主要由以下8章组成:  第1章简要介绍无线通信系统的结构和发展概况,以及其盲处理算法的相关知识。第2章介绍人工神经网络及相应知识,从BP神经网络若手研究盲处理问题,同时给出复数域BP神经网络的信号盲处理方法和该类方法的优缺点说明。在第3章中介绍智能体的概念,并给出基于多智能体系统的盲处理方法。第4章介绍基于支持向量机框架下的盲处理算法,介绍支持向批机的原理,给出基于ε- 支持向量回归机的信道估计新方法,并介绍基千支持向批回归方法的MPSK和QAM的盲信号处理方法,然后引入星座匹配误差函数,并根据线性支持向搅回归和有序风险最小化原则,由恒模和星座匹配误差函数联合组成的新经验风险项构造一个新的代价函数,进而通过迭代求解优化问题获得均衡器。第5章介绍神经动力学和反馈神经网络的相关知识,特别地从神经动力学角度论述连续反馈神经网络可有效飞作的原因,论述反馈神经网络权值矩阵对吸引子和相轨迹的影响。并给出如何根据系统接收信号与发送信号之间的子空间关系,构造一个适用于现代通信系统中的盲检测的特定性能函数和优化问题。第6章分别展示如何基于连续多阈值神经元Hopfield网络模型实现通信信号盲处理的理论和方法,针对多相制信号的特点给出两种连续相位多阙值激励函数形式,并分析讨论该两类激励函数参数的选择、分别给出连续多阈值神经元 Hopfield 网络工作于同步和异步模式下的新能队函数及其相关证明。介绍采用幅相连续激励法解决稀疏QAM 信号的盲检测思路,并针对 QAM 信号的特点,分别给出连续幅度和相位多阙值激励函数形式,分析讨论该类激励函数的特点。第7章则电在从另一个角度提出采用同相正交振幅连续激励法解决密集QAM信号盲检测方法。介绍如何从激励函数角度分析放大因子选择的范围;给出该特定问题的同步和异步运行模式下的新能量函数形式;并证明和分析所设计的能量函数部分定理;介绍在基于反馈神经网络的信号盲处理方法这一研究课题中发现的几类现象,包括当信号的统计信息缺失或失真情况下,连续多阈值神经元反馈神经网络的盲检测能力:通用高阶QMA的激励函数被使用作为低阶QAM信号盲检测问题时的适用性......

    标签: 无线通信系统 智能算法

    上传时间: 2022-07-09

    上传用户: