磁芯电感器的谐波失真分析 摘 要:简述了改进铁氧体软磁材料比损耗系数和磁滞常数ηB,从而降低总谐波失真THD的历史过程,分析了诸多因数对谐波测量的影响,提出了磁心性能的调控方向。 关键词:比损耗系数, 磁滞常数ηB ,直流偏置特性DC-Bias,总谐波失真THD Analysis on THD of the fer rite co res u se d i n i nductancShi Yan Nanjing Finemag Technology Co. Ltd., Nanjing 210033 Abstract: Histrory of decreasing THD by improving the ratio loss coefficient and hysteresis constant of soft magnetic ferrite is briefly narrated. The effect of many factors which affect the harmonic wave testing is analysed. The way of improving the performance of ferrite cores is put forward. Key words: ratio loss coefficient,hysteresis constant,DC-Bias,THD 近年来,变压器生产厂家和软磁铁氧体生产厂家,在电感器和变压器产品的总谐波失真指标控制上,进行了深入的探讨和广泛的合作,逐步弄清了一些似是而非的问题。从工艺技术上采取了不少有效措施,促进了质量问题的迅速解决。本文将就此热门话题作一些粗浅探讨。 一、 历史回顾 总谐波失真(Total harmonic distortion) ,简称THD,并不是什么新的概念,早在几十年前的载波通信技术中就已有严格要求<1>。1978年邮电部公布的标准YD/Z17-78“载波用铁氧体罐形磁心”中,规定了高μQ材料制作的无中心柱配对罐形磁心详细的测试电路和方法。如图一电路所示,利用LC组成的150KHz低通滤波器在高电平输入的情况下测量磁心产生的非线性失真。这种相对比较的实用方法,专用于无中心柱配对罐形磁心的谐波衰耗测试。 这种磁心主要用于载波电报、电话设备的遥测振荡器和线路放大器系统,其非线性失真有很严格的要求。 图中 ZD —— QF867 型阻容式载频振荡器,输出阻抗 150Ω, Ld47 —— 47KHz 低通滤波器,阻抗 150Ω,阻带衰耗大于61dB, Lg88 ——并联高低通滤波器,阻抗 150Ω,三次谐波衰耗大于61dB Ld88 ——并联高低通滤波器,阻抗 150Ω,三次谐波衰耗大于61dB FD —— 30~50KHz 放大器, 阻抗 150Ω, 增益不小于 43 dB,三次谐波衰耗b3(0)≥91 dB, DP —— Qp373 选频电平表,输入高阻抗, L ——被测无心罐形磁心及线圈, C ——聚苯乙烯薄膜电容器CMO-100V-707APF±0.5%,二只。 测量时,所配用线圈应用丝包铜电磁线SQJ9×0.12(JB661-75)在直径为16.1mm的线架上绕制 120 匝, (线架为一格) , 其空心电感值为 318μH(误差1%) 被测磁心配对安装好后,先调节振荡器频率为 36.6~40KHz, 使输出电平值为+17.4 dB, 即选频表在 22′端子测得的主波电平 (P2)为+17.4 dB,然后在33′端子处测得输出的三次谐波电平(P3), 则三次谐波衰耗值为:b3(+2)= P2+S+ P3 式中:S 为放大器增益dB 从以往的资料引证, 就可以发现谐波失真的测量是一项很精细的工作,其中测量系统的高、低通滤波器,信号源和放大器本身的三次谐波衰耗控制很严,阻抗必须匹配,薄膜电容器的非线性也有相应要求。滤波器的电感全由不带任何磁介质的大空心线圈绕成,以保证本身的“洁净” ,不至于造成对磁心分选的误判。 为了满足多路通信整机的小型化和稳定性要求, 必须生产低损耗高稳定磁心。上世纪 70 年代初,1409 所和四机部、邮电部各厂,从工艺上改变了推板空气窑烧结,出窑后经真空罐冷却的落后方式,改用真空炉,并控制烧结、冷却气氛。技术上采用共沉淀法攻关试制出了μQ乘积 60 万和 100 万的低损耗高稳定材料,在此基础上,还实现了高μ7000~10000材料的突破,从而大大缩短了与国外企业的技术差异。当时正处于通信技术由FDM(频率划分调制)向PCM(脉冲编码调制) 转换时期, 日本人明石雅夫发表了μQ乘积125 万为 0.8×10 ,100KHz)的超优铁氧体材料<3>,其磁滞系数降为优铁
上传时间: 2014-12-24
上传用户:7891
这里仅讨论电容及电感值的选取。种类的选取,则需要更多的工程实践,更多的RF电路的经验,这里不再讨论。从理论上讲,隔直电容、旁路电容的容量应满足。显然,在任何角频率下,这在工程上是作不到的。电容量究竟取多大是合理的呢?图1-5(a),(b)给出了隔直电容(多数情况下,这个电容又称为耦合电容)和旁路电容的使用简化
上传时间: 2013-11-12
上传用户:13188549192
在静电传感器测量气/固两相流参数的基础上,以J.B.Gajewski教授的成果为基础,对电容的计算进行了研究。将静电传感器电极与屏蔽罩间的电容cp看作圆柱型电容,对其建立的静电传感器数学模型中的感应电极与屏蔽罩间电容值进行探讨,并得到了这个电容的计算式。
上传时间: 2014-12-24
上传用户:erkuizhang
MAX29X是美国MAXIM公司生瓣的8阶开关电容低通滤波器,由于价格便宜、使用方便、设计简单,在通讯、信号自理等领域得到了广泛的应用。本文就其工作原理、电气参数、设计注意事项等问题作了讨论,具有一定的实用参考价值。关键词:开关电容、滤波器、设计 1 引言 开关电容滤波器在近些年得到了迅速的发展,世界上一些知名的半导体厂家相继推出了自己的开头电容滤波器集成电路,使形状电容滤波器的发展上了一个新台阶。 MAXIM公司在模拟器件生产领域颇具影响,它生产MAX291/292/293/294/295/296/297系列8阶低通开关电容滤波器由于使用方便(基本上不需外接元件)、设计简单(频率响应函数是固定的,只需确定其拐角频率即截止频率)、尺寸小(有8-pin DIP封装)等优点,在ADC的反混叠滤波、噪声分析、电源噪声抑制等领域得到了广泛的应用。 MAX219/295为巴特活思(型滤波器,在通频带内,它的增益最稳定,波动小,主要用于仪表测量等要求整个通频带内增益恒定的场合。MAX292/296为贝塞尔(Bessel)滤波器,在通频带内它的群时延时恒定的,相位对频率呈线性关系,因此脉冲信号通过MAX292/296之后尖峰幅度小,稳定速度快。由于脉冲信号通过贝塞尔滤波器之后所有频率分量的延迟时间是相同的,故可保证波形基本不变。关于巴特活和贝塞尔滤波器的特性可能图1来说明。图1的踪迹A为加到滤波器输入端的3kHz的脉冲,这里我们把滤波器的截止频率设为10kHZ。踪迹B通过MAX292/296后的波形。从图中可以看出,由于MAX292/296在通带内具有线性相位特性,输出波形基本上保持了方波形状,只是边沿处变圆了一些。方波通过MAX291/295之后,由于不同频率的信号产生的时延不同,输出波形中就出现了尖峰(overshoot)和铃流(ringing)。 MAX293/294/297为8阶圆型(Elliptic)滤波器,它的滚降速度快,从通频带到阻带的过渡带可以作得很窄。在椭圆型滤波器中,第一个传输零点后输出将随频率的变高而增大,直到第二个零点处。这样几番重复就使阻事宾频响呈现波浪形,如图2所示。阻带从fS起算起,高于频率fS处的增益不会超过fS处的增益。在椭圆型滤波中,通频带内的增益存在一定范围的波动。椭圆型滤波器的一个重要参数就是过渡比。过渡比定义为阻带频率fS与拐角频率(有时也等同为截止频率)由时钟频率确定。时钟既可以是外接的时钟,也可以是自己的内部时钟。使用内部时钟时只需外接一个定时用的电容既可。 在MAX29X系列滤波器集成电路中,除了滤波器电路外还有一个独立的运算放大器(其反相输入端已在内部接地)。用这个运算放大器可以组成配合MAX29X系列滤波器使用后的滤波、反混滤波等连续时间低通滤波器。 下面归纳一下它们的特点: ●全部为8阶低通滤波器。MAX291/MAX295为巴特沃思滤波器;MAX292/296为贝塞尔滤波器;MAX293/294/297为椭圆滤波器。 ●通过调整时钟,截止频率的调整范围为:0.1Hz~25kHz(MAX291/292/293*294);0.1Hz~kHz(MAX295/296/297)。 ●既可用外部时钟也可用内部时钟作为截止频率的控制时钟。 ●时钟频率和截止频率的比率:10∶1(MAX291/292/293/294);50∶1(MAX295/296/297)。 ●既可用单+5V电源供电也可用±5V双电源供电。 ●有一个独立的运算放大器可用于其它应用目的。 ●8-pin DIP、8-pin SO和宽SO-16多种封装。2 管脚排列和主要电气参数 MAX29X系列开头电容滤波器的管脚排列如图3所示。 管脚功能定义如下: CLK:时钟输入。 OP OUT:独立运放的输出端。 OP INT:独立运放的同相输入端。 OUT:滤波器输出。 IN:滤波器输入。 V-:负电源 。双电源供电时搛-2.375~-5.5V之间的电压,单电源供电时V--=-V。 V+:正电源。双电源供电时V+=+2.35~+5.5V,单电源供电时V+=+4.75~+11.0V。 GND:地线。单电源工作时GND端必须用电源电压的一半作偏置电压。 NC:空脚,无连线。 MAX29X的极限电气参数如下: 电源(V+~V-):12V 输入电压(任意脚):V--0.3V≤VIN≤V++0.3V 连续工作时的功耗:8脚塑封DIP:727mW;8脚SO:471mW;16脚宽SO:762mW;8脚瓷封DIP:640mW。 工作温度范围:MAX29-C-:0℃~+70℃;MAX29-E-:-40℃~+85℃;MAX29-MJA:-55℃~+125℃;保存温度范围:-65℃~+160℃;焊接温度(10秒):+300℃; 大多数的形状电容滤波器都采用四节级连结构,每一节包含两个滤波器极点。这种方法的特点就是易于设计。但采用这种方法设计出来的滤波器的特性对所用元件的元件值偏差很敏感。基于以上考虑,MAX29X系列用带有相加和比例功能的开关电容持了梯形无源滤波器,这种方法保持了梯形无源滤波器的优点,在这种结构中每个元件的影响作用是对于整个频率响应曲线的,某元件值的误差将会分散到所有的极点,因此不值像四节级连结构那样对某一个极点特别明显的影响。3 MAX29X的频率特性 MAX29X的频率特性如图4所示。图中的fs都假定为1kHz。4 设计考虑 下面对MAX29X系列形状电容滤波器的使用做些讨论。4.1 时钟信号 MAX29X系列开头电容滤波器推荐使用的时钟信号最高频率为2.5MHz。根据对应的时钟频率和拐角频率的比值,MAX291/MAX292/MAX293/MAX294的拐角频率最高为25kHz.MAX295/MAX296/MAX297的拐角频率最高为50kHz 。 MAX29X系列开关电容滤波器的时钟信号既可幅外部时钟直接驱动也可由内部振荡器产生。使用外部时钟时,无论是采用单电源供电还是双电源供电,CLK可直接和采用+5V供电的CMOS时钟信号发生器的输出相连。通过调整外部时钟的频率,可完成滤波器拐角的实时调整。 当使用内部时钟时,振荡器的频率由接在CLK端上的电容VCOSC决定: fCOSC (kHz)=105/3COSC (pF) 4.2 供电 MAX29X系列开关电容滤波器既可用单电源工作也可用双电源工作。双电源供电时的电源电压范围为±2.375~±5.5V。在实际电路中一般要在正负电源和GND之间接一旁路电容。 当采用单电源供电时,V-端接地,而GND端要通过电阻分压获得一个电压参考,该电压参考的电压值为1/2的电源电压,参见图5。4.3 输入信号幅度范围限制 MAX29X允许的输入信号的最大范围为V--0.3V~V++0.3V。一般情况下在+5V单电源供电时输入信号范围取1V~4V,±5V双电源供电时,输入信号幅度范围取±4V。如果输入信号超过此范围,总谐波失真THD和噪声就大大增加;同样如果输入信号幅度过小(VP-P<1V),也会造成THD和噪声的增加。4.4 独立运算放大器的用法 MAX29X中都设计有一个独立的运算放大器,这个放大器和滤波器的实现无直接关系,用这个放大器可组成一个一阶和二阶滤波器,用于实现MAX29X之前的反混叠滤波功能鄞MAX29X之后的时钟噪声抑制功能。这个运算放大器的反相端已在内部和GND相连。 图6是用该独立运放组成的2阶低通滤波器的电路,它的拐角频率为10kHz,输入阻抗为22Ω,可满足MAX29X形状电容滤波器的最小负载要求(MAX29X的输出负载要求不小于20kΩ)可以通过改变R1、R2、R3、C1、C2的元件值改变拐角频率。具体的元件值和拐角频率的对应关系参见表1。
上传时间: 2013-10-18
上传用户:macarco
PSHLY-B回路电阻测试仪介绍
上传时间: 2013-11-05
上传用户:木子叶1
针对目前使用的RS232接口数字化B超键盘存在PC主机启动时不能设置BIOS,提出一种PS2键盘的设计方法。基于W78E052D单片机,采用8通道串行A/D转换器设计了8个TGC电位器信息采集电路,电位器位置信息以键盘扫描码序列形式发送,正交编码器信号通过XC9536XL转换为单片机可接收的中断信号,软件接收到中断信息后等效处理成按键。结果表明,在满足开机可设置BIOS同时,又可实现超声特有功能,不需要专门设计驱动程序,接口简单,成本低。 Abstract: Aiming at the problem of the digital ultrasonic diagnostic imaging system keyboard with RS232 interface currently used couldn?蒺t set the BIOS when the PC boot, this paper proposed a design method of PS2 keyboards. Based on W78E052D microcontroller,designed eight TGC potentiometers information acquisition circuit with 8-channel serial A/D converter, potentiometer position information sent out with keyboard scan code sequentially.The control circuit based on XC9536 CPLD is used for converting the mechanical actions of the encoders into the signals that can be identified by the MCU, software received interrupt information and equivalently treatmented as key. The results show that the BIOS can be set to meet the boot, ultrasound specific functionality can be achieved at the same time, it does not require specially designed driver,the interface is simple and low cost.
上传时间: 2013-10-10
上传用户:asdfasdfd
摘要:设计以ATmega16单片机为核心的自动对靶控制系统。该系统利用PC机作为上位机,控制摄像头定时摄取图像,利用2g-r-b颜色特征分割该彩色图像,当绿色颜色分量大于预设阀值时,便判定摄像头下有靶标,用PC机的串口通信系统发送指令到单片机,延迟预设的时间后,控制执行机构进行喷雾,实现自动对靶喷雾,并且可以设定延迟时间,从而实现在不同行走速度下的自动对靶喷雾。关键词:自动对靶;AVR;串口通信;颜色分割
上传时间: 2014-12-27
上传用户:redmoons
单片机指令系统原理 51单片机的寻址方式 学习汇编程序设计,要先了解CPU的各种寻址法,才能有效的掌握各个命令的用途,寻址法是命令运算码找操作数的方法。在我们学习的8051单片机中,有6种寻址方法,下面我们将逐一进行分析。 立即寻址 在这种寻址方式中,指令多是双字节的,一般第一个字节是操作码,第二个字节是操作数。该操作数直接参与操作,所以又称立即数,有“#”号表示。立即数就是存放在程序存储器中的常数,换句话说就是操作数(立即数)是包含在指令字节中的。 例如:MOV A,#3AH这条指令的指令代码为74H、3AH,是双字节指令,这条指令的功能是把立即数3AH送入累加器A中。MOV DPTR,#8200H在前面学单片机的专用寄存器时,我们已学过,DPTR是一个16位的寄存器,它由DPH及DPL两个8位的寄存器组成。这条指令的意思就是把立即数的高8位(即82H)送入DPH寄存器,把立即数的低8位(即00H)送入DPL寄存器。这里也特别说明一下:在80C51单片机的指令系统中,仅有一条指令的操作数是16位的立即数,其功能是向地址指针DPTR传送16位的地址,即把立即数的高8位送入DPH,低8位送入DPL。 直接寻址 直接寻址方式是指在指令中操作数直接以单元地址的形式给出,也就是在这种寻址方式中,操作数项给出的是参加运算的操作数的地址,而不是操作数。例如:MOV A,30H 这条指令中操作数就在30H单元中,也就是30H是操作数的地址,并非操作数。 在80C51单片机中,直接地址只能用来表示特殊功能寄存器、内部数据存储器以及位地址空间,具体的说就是:1、内部数据存储器RAM低128单元。在指令中是以直接单元地址形式给出。我们知道低128单元的地址是00H-7FH。在指令中直接以单元地址形式给出这句话的意思就是这0-127共128位的任何一位,例如0位是以00H这个单元地址形式给出、1位就是以01H单元地址给出、127位就是以7FH形式给出。2、位寻址区。20H-2FH地址单元。3、特殊功能寄存器。专用寄存器除以单元地址形式给出外,还可以以寄存器符号形式给出。例如下面我们分析的一条指令 MOV IE,#85H 前面的学习我们已知道,中断允许寄存器IE的地址是80H,那么也就是这条指令可以以MOV IE,#85H 的形式表述,也可以MOV 80H,#85H的形式表述。 关于数据存储器RAM的内部情况,请查看我们课程的第十二课。 直接寻址是唯一能访问特殊功能寄存器的寻址方式! 大家来分析下面几条指令:MOV 65H,A ;将A的内容送入内部RAM的65H单元地址中MOV A,direct ;将直接地址单元的内容送入A中MOV direct,direct;将直接地址单元的内容送直接地址单元MOV IE,#85H ;将立即数85H送入中断允许寄存器IE 前面我们已学过,数据前面加了“#”的,表示后面的数是立即数(如#85H,就表示85H就是一个立即数),数据前面没有加“#”号的,就表示后面的是一个地址地址(如,MOV 65H,A这条指令的65H就是一个单元地址)。 寄存器寻址 寄存器寻址的寻址范围是:1、4个工作寄存器组共有32个通用寄存器,但在指令中只能使用当前寄存器组(工作寄存器组的选择在前面专用寄存器的学习中,我们已知道,是由程序状态字PSW中的RS1和RS0来确定的),因此在使用前常需要通过对PSW中的RS1、RS0位的状态设置,来进行对当前工作寄存器组的选择。2、部份专用寄存器。例如,累加器A、通用寄存器B、地址寄存器DPTR和进位位CY。 寄存器寻址方式是指操作数在寄存器中,因此指定了寄存器名称就能得到操作数。例如:MOV A,R0这条指令的意思是把寄存器R0的内容传送到累加器A中,操作数就在R0中。INC R3这条指令的意思是把寄存器R3中的内容加1 从前面的学习中我产应可以理解到,其实寄存器寻址方式就是对由PSW程序状态字确定的工作寄存器组的R0-R7进行读/写操作。 寄存器间接寻址 寄存间接寻址方式是指寄存器中存放的是操作数的地址,即操作数是通过寄存器间接得到的,因此称为寄存器间接寻址。 MCS-51单片机规定工作寄存器的R0、R1做为间接寻址寄存器。用于寻址内部或外部数据存储器的256个单元。为什么会是256个单元呢?我们知道,R0或者R1都是一个8位的寄存器,所以它的寻址空间就是2的八次方=256。例:MOV R0,#30H ;将值30H加载到R0中 MOV A,@R0 ;把内部RAM地址30H内的值放到累加器A中 MOVX A,@R0 ;把外部RAM地址30H内的值放到累加器A中 大家想想,如果用DPTR做为间址寄存器,那么它的寻址范围是多少呢?DPTR是一个16位的寄存器,所以它的寻址范围就是2的十六次方=65536=64K。因用DPTR做为间址寄存器的寻址空间是64K,所以访问片外数据存储器时,我们通常就用DPTR做为间址寄存器。例:MOV DPTR,#1234H ;将DPTR值设为1234H(16位) MOVX A,@DPTR ;将外部RAM或I/O地址1234H内的值放到累加器A中 在执行PUSH(压栈)和POP(出栈)指令时,采用堆栈指针SP作寄存器间接寻址。例:PUSH 30H ;把内部RAM地址30H内的值放到堆栈区中堆栈区是由SP寄存器指定的,如果执行上面这条命令前,SP为60H,命令执行后会把内部RAM地址30H内的值放到RAM的61H内。 那么做为寄存器间接寻址用的寄存器主要有哪些呢?我们前面提到的有四个,R0、R1、DPTR、SP 寄存器间接寻址范围总结:1、内部RAM低128单元。对内部RAM低128单元的间接寻址,应使用R0或R1作间址寄存器,其通用形式为@Ri(i=0或1)。 2、外部RAM 64KB。对外部RAM64KB的间接寻址,应使用@DPTR作间址寻址寄存器,其形式为:@DPTR。例如MOVX A,@DPTR;其功能是把DPTR指定的外部RAM的单元的内容送入累加器A中。外部RAM的低256单元是一个特殊的寻址区,除可以用DPTR作间址寄存器寻址外,还可以用R0或R1作间址寄存器寻址。例如MOVX A,@R0;这条指令的意思是,把R0指定的外部RAM单元的内容送入累加器A。 堆栈操作指令(PUSH和POP)也应算作是寄存器间接寻址,即以堆栈指针SP作间址寄存器的间接寻址方式。 寄存器间接寻址方式不可以访问特殊功能寄存器!! 寄存器间接寻址也须以寄存器符号的形式表示,为了区别寄存器寻址我寄存器间接寻址的区别,在寄存器间接寻址方式式中,寄存器的名称前面加前缀标志“@”。 基址寄存器加变址寄存器的变址寻址 这种寻址方式以程序计数器PC或DPTR为基址寄存器,累加器A为变址寄存器,变址寻址时,把两者的内容相加,所得到的结果作为操作数的地址。这种方式常用于访问程序存储器ROM中的数据表格,即查表操作。变址寻址只能读出程序内存入的值,而不能写入,也就是说变址寻址这种方式只能对程序存储器进行寻址,或者说它是专门针对程序存储器的寻址方式。例:MOVC A,@A+DPTR这条指令的功能是把DPTR和A的内容相加,再把所得到的程序存储器地址单元的内容送A假若指令执行前A=54H,DPTR=3F21H,则这条指令变址寻址形成的操作数地址就是54H+3F21H=3F75H。如果3F75H单元中的内容是7FH,则执行这条指令后,累加器A中的内容就是7FH。 变址寻址的指令只有三条,分别如下:JMP @A+DPTRMOVC A,@A+DPTRMOVC A,@A+PC 第一条指令JMP @A+DPTR这是一条无条件转移指令,这条指令的意思就是DPTR加上累加器A的内容做为一个16位的地址,执行JMP这条指令是,程序就转移到A+DPTR指定的地址去执行。 第二、三条指令MOVC A,@A+DPTR和MOVC A,@A+PC指令这两条指令的通常用于查表操作,功能完全一样,但使用起来却有一定的差别,现详细说明如下。我们知道,PC是程序指针,是十六位的。DPTR是一个16位的数据指针寄存器,按理,它们的寻址范围都应是64K。我们在学习特殊功能寄存器时已知道,程序计数器PC是始终跟踪着程序的执行的。也就是说,PC的值是随程序的执行情况自动改变的,我们不可以随便的给PC赋值。而DPTR是一个数据指针,我们就可以给空上数据指针DPTR进行赋值。我们再看指令MOVC A,@A+PC这条指令的意思是将PC的值与累加器A的值相加作为一个地址,而PC是固定的,累加器A是一个8位的寄存器,它的寻址范围是256个地址单元。讲到这里,大家应可明白,MOVC A,@A+PC这条指令的寻址范围其实就是只能在当前指令下256个地址单元。所在,这在我们实际应用中,可能就会有一个问题,如果我们需要查询的数据表在256个地址单元之内,则可以用MOVC A,@A+PC这条指令进行查表操作,如果超过了256个单元,则不能用这条指令进行查表操作。刚才我们已说到,DPTR是一个数据指针,这个数据指针我们可以给它赋值操作的。通过赋值操作。我们可以使MOVC A,@A+DPTR这条指令的寻址范围达到64K。这就是这两条指令在实际应用当中要注意的问题。 变址寻址方式是MCS-51单片机所独有的一种寻址方式。 位寻址 80C51单片机有位处理功能,可以对数据位进行操作,因此就有相应的位寻址方式。所谓位寻址,就是对内部RAM或可位寻址的特殊功能寄存器SFR内的某个位,直接加以置位为1或复位为0。 位寻址的范围,也就是哪些部份可以进行位寻址: 1、我们在第十二课学习51单片机的存储器结构时,我们已知道在单片机的内部数据存储器RAM的低128单元中有一个区域叫位寻址区。它的单元地址是20H-2FH。共有16个单元,一个单元是8位,所以位寻址区共有128位。这128位都单独有一个位地址,其位地址的名字就是00H-7FH。这里就有一个比较麻烦的问题需要大家理解清楚了。我们在前面的学习中00H、01H。。。。7FH等等,所表示的都是一个字节(或者叫单元地址),而在这里,这些数据都变成了位地址。我们在指令中,或者在程序中如何来区分它是一个单元地址还是一个位地址呢?这个问题,也就是我们现在正在研究的位寻址的一个重要问题。其实,区分这些数据是位地址还是单元地址,我们都有相应的指令形式的。这个问题我们在后面的指令系统学习中再加以论述。 2、对专用寄存器位寻址。这里要说明一下,不是所有的专用寄存器都可以位寻址的。具体哪些专用寄存器可以哪些专用寄存器不可以,请大家回头去看看我们前面关于专用寄存器的相关文章。一般来说,地址单元可以被8整除的专用寄存器,通常都可以进行位寻址,当然并不是全部,大家在应用当中应引起注意。 专用寄存器的位寻址表示方法: 下面我们以程序状态字PSW来进行说明 D7 D6 D5 D4 D3 D2 D1 D0 CY AC F0 RS1 RS0 OV P 1、直接使用位地址表示:看上表,PSW的第五位地址是D5,所以可以表示为D5H MOV C,D5H 2、位名称表示:表示该位的名称,例如PSW的位5是F0,所以可以用F0表示 MOV C,F0 3、单元(字节)地址加位表示:D0H单元位5,表示为DOH.5 MOV C,D0H.5 4、专用寄存器符号加位表示:例如PSW.5 MOV C,PSW.5 这四种方法实现的功能都是相同的,只是表述的方式不同而已。 例题: 1. 说明下列指令中源操作数采用的寻址方式。 MOV R5,R7 答案:寄存器寻址方式 MOV A,55H 直接寻址方式 MOV A,#55H 立即寻址方式 JMP @A+DPTR 变址寻址方式 MOV 30H,C 位寻址方式 MOV A,@R0 间接寻址方式 MOVX A,@R0 间接寻址方式 改错题 请判断下列的MCS-51单片机指令的书写格式是否有错,若有,请说明错误原因。 MOV R0,@R3 答案:间址寄存器不能使用R2~R7。 MOVC A,@R0+DPTR 变址寻址方式中的间址寄存器不可使用R0,只可使用A。 ADD R0,R1 运算指令中目的操作数必须为累加器A,不可为R0。 MUL AR0 乘法指令中的乘数应在B寄存器中,即乘法指令只可使用AB寄存器组合。
上传时间: 2013-11-11
上传用户:caozhizhi
1、程序的基本格式先介绍二条伪指令:EQU ——标号赋值伪指令ORG ——地址定义伪指令PIC16C5X在RESET后指令计算器PC被置为全“1”,所以PIC16C5X几种型号芯片的复位地址为:PIC16C54/55:1FFHPIC16C56:3FFHPIC16C57/58:7FFH一般来说,PIC的源程序并没有要求统一的格式,大家可以根据自己的风格来编写。但这里我们推荐一种清晰明了的格式TITLE This is ⋯⋯ ;程序标题;--------------------------------------;名称定义和变量定义;--------------------------------------F0 EQU 0RTCC EQU 1PC EQU 2STATUS EQU 3FSR EQU 4RA EQU 5RB EQU 6RC EQU 7┋PIC16C54 EQU 1FFH ;芯片复位地址PIC16C56 EQU 3FFHPIC16C57 EQU 7FFH;-----------------------------------------ORG PIC16C54 GOTO MAIN ;在复位地址处转入主程序ORG 0 ;在0000H开始存放程序;-----------------------------------------;子程序区;-----------------------------------------DELAY MOVLW 255┋RETLW 0;------------------------------------------;主程序区;------------------------------------------MAINMOVLW B‘00000000’TRIS RB ;RB已由伪指令定义为6,即B口┋LOOPBSF RB,7 CALL DELAYBCF RB,7 CALL DELAY┋GOTO LOOP;-------------------------------------------END ;程序结束注:MAIN标号一定要处在0页面内。2、程序设计基础
上传时间: 2013-11-14
上传用户:cjf0304
微处理器及微型计算机的发展概况 第一代微处理器是以Intel公司1971年推出的4004,4040为代表的四位微处理机。 第二代微处理机(1973年~1977年),典型代表有:Intel 公司的8080、8085;Motorola公司的M6800以及Zlog公司的Z80。 第三代微处理机 第三代微机是以16位机为代表,基本上是在第二代微机的基础上发展起来的。其中Intel公司的8088。8086是在8085的基础发展起来的;M68000是Motorola公司在M6800 的基础发展起来的; 第四代微处理机 以Intel公司1984年10月推出的80386CPU和1989年4月推出的80486CPU为代表, 第五代微处理机的发展更加迅猛,1993年3月被命名为PENTIUM的微处理机面世,98年PENTIUM 2又被推向市场。 INTEL CPU 发展历史Intel第一块CPU 4004,4位主理器,主频108kHz,运算速度0.06MIPs(Million Instructions Per Second, 每秒百万条指令),集成晶体管2,300个,10微米制造工艺,最大寻址内存640 bytes,生产曰期1971年11月. 8085,8位主理器,主频5M,运算速度0.37MIPs,集成晶体管6,500个,3微米制造工艺,最大寻址内存64KB,生产曰期1976年 8086,16位主理器,主频4.77/8/10MHZ,运算速度0.75MIPs,集成晶体管29,000个,3微米制造工艺,最大寻址内存1MB,生产曰期1978年6月. 80486DX,DX2,DX4,32位主理器,主频25/33/50/66/75/100MHZ,总线频率33/50/66MHZ,运算速度20~60MIPs,集成晶体管1.2M个,1微米制造工艺,168针PGA,最大寻址内存4GB,缓存8/16/32/64KB,生产曰期1989年4月 Celeron一代, 主频266/300MHZ(266/300MHz w/o L2 cache, Covington芯心 (Klamath based),300A/333/366/400/433/466/500/533MHz w/128kB L2 cache, Mendocino核心 (Deschutes-based), 总线频率66MHz,0.25微米制造工艺,生产曰期1998年4月) Pentium 4 (478针),至今分为三种核心:Willamette核心(主频1.5G起,FSB400MHZ,0.18微米制造工艺),Northwood核心(主频1.6G~3.0G,FSB533MHZ,0.13微米制造工艺, 二级缓存512K),Prescott核心(主频2.8G起,FSB800MHZ,0.09微米制造工艺,1M二级缓存,13条全新指令集SSE3),生产曰期2001年7月. 更大的缓存、更高的频率、 超级流水线、分支预测、乱序执行超线程技术 微型计算机组成结构单片机简介单片机即单片机微型计算机,是将计算机主机(CPU、 内存和I/O接口)集成在一小块硅片上的微型机。 三、计算机编程语言的发展概况 机器语言 机器语言就是0,1码语言,是计算机唯一能理解并直接执行的语言。汇编语言 用一些助记符号代替用0,1码描述的某种机器的指令系统,汇编语言就是在此基础上完善起来的。高级语言 BASIC,PASCAL,C语言等等。用高级语言编写的程序称源程序,它们必须通过编译或解释,连接等步骤才能被计算机处理。 面向对象语言 C++,Java等编程语言是面向对象的语言。 1.3 微型计算机中信息的表示及运算基础(一) 十进制ND有十个数码:0~9,逢十进一。 例 1234.5=1×103 +2×102 +3×101 +4×100 +5×10-1加权展开式以10称为基数,各位系数为0~9,10i为权。 一般表达式:ND= dn-1×10n-1+dn-2×10n-2 +…+d0×100 +d-1×10-1+… (二) 二进制NB两个数码:0、1, 逢二进一。 例 1101.101=1×23+1×22+0×21+1×20+1×2-1+1×2-3 加权展开式以2为基数,各位系数为0、1, 2i为权。 一般表达式: NB = bn-1×2n-1 + bn-2×2n-2 +…+b0×20 +b-1×2-1+… (三)十六进制NH十六个数码0~9、A~F,逢十六进一。 例:DFC.8=13×162 +15×161 +12×160 +8×16-1 展开式以十六为基数,各位系数为0~9,A~F,16i为权。 一般表达式: NH= hn-1×16n-1+ hn-2×16n-2+…+ h0×160+ h-1×16-1+… 二、不同进位计数制之间的转换 (二)二进制与十六进制数之间的转换 24=16 ,四位二进制数对应一位十六进制数。举例:(三)十进制数转换成二、十六进制数整数、小数分别转换 1.整数转换法“除基取余”:十进制整数不断除以转换进制基数,直至商为0。每除一次取一个余数,从低位排向高位。举例: 2. 小数转换法“乘基取整”:用转换进制的基数乘以小数部分,直至小数为0或达到转换精度要求的位数。每乘一次取一次整数,从最高位排到最低位。举例: 三、带符号数的表示方法 机器数:机器中数的表示形式。真值: 机器数所代表的实际数值。举例:一个8位机器数与它的真值对应关系如下: 真值: X1=+84=+1010100B X2=-84= -1010100B 机器数:[X1]机= 01010100 [X2]机= 11010100(二)原码、反码、补码最高位为符号位,0表示 “+”,1表示“-”。 数值位与真值数值位相同。 例 8位原码机器数: 真值: x1 = +1010100B x2 =- 1010100B 机器数: [x1]原 = 01010100 [x2]原 = 11010100原码表示简单直观,但0的表示不唯一,加减运算复杂。 正数的反码与原码表示相同。 负数反码符号位为 1,数值位为原码数值各位取反。 例 8位反码机器数: x= +4: [x]原= 00000100 [x]反= 00000100 x= -4: [x]原= 10000100 [x]反= 111110113、补码(Two’s Complement)正数的补码表示与原码相同。 负数补码等于2n-abs(x)8位机器数表示的真值四、 二进制编码例:求十进制数876的BCD码 876= 1000 0111 0110 BCD 876= 36CH = 1101101100B 2、字符编码 美国标准信息交换码ASCII码,用于计算 机与计算机、计算机与外设之间传递信息。 3、汉字编码 “国家标准信息交换用汉字编码”(GB2312-80标准),简称国标码。 用两个七位二进制数编码表示一个汉字 例如“巧”字的代码是39H、41H汉字内码例如“巧”字的代码是0B9H、0C1H1·4 运算基础 一、二进制数的运算加法规则:“逢2进1” 减法规则:“借1当2” 乘法规则:“逢0出0,全1出1”二、二—十进制数的加、减运算 BCD数的运算规则 循十进制数的运算规则“逢10进1”。但计算机在进行这种运算时会出现潜在的错误。为了解决BCD数的运算问题,采取调整运算结果的措施:即“加六修正”和“减六修正”例:10001000(BCD)+01101001(BCD) =000101010111(BCD) 1 0 0 0 1 0 0 0 + 0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 1 + 0 1 1 0 0 1 1 0 ……调整 1 0 1 0 1 0 1 1 1 进位 例: 10001000(BCD)- 01101001(BCD)= 00011001(BCD) 1 0 0 0 1 0 0 0 - 0 1 1 0 1 0 0 1 0 0 0 1 1 1 1 1 - 0 1 1 0 ……调整 0 0 0 1 1 0 0 1 三、 带符号二进制数的运算 1.5 几个重要的数字逻辑电路编码器译码器计数器微机自动工作的条件程序指令顺序存放自动跟踪指令执行1.6 微机基本结构微机结构各部分组成连接方式1、以CPU为中心的双总线结构;2、以内存为中心的双总线结构;3、单总线结构CPU结构管脚特点 1、多功能;2、分时复用内部结构 1、控制; 2、运算; 3、寄存器; 4、地址程序计数器堆栈定义 1、定义;2、管理;3、堆栈形式
上传时间: 2013-10-17
上传用户:erkuizhang