磁芯电感器的谐波失真分析 摘 要:简述了改进铁氧体软磁材料比损耗系数和磁滞常数ηB,从而降低总谐波失真THD的历史过程,分析了诸多因数对谐波测量的影响,提出了磁心性能的调控方向。 关键词:比损耗系数, 磁滞常数ηB ,直流偏置特性DC-Bias,总谐波失真THD Analysis on THD of the fer rite co res u se d i n i nductancShi Yan Nanjing Finemag Technology Co. Ltd., Nanjing 210033 Abstract: Histrory of decreasing THD by improving the ratio loss coefficient and hysteresis constant of soft magnetic ferrite is briefly narrated. The effect of many factors which affect the harmonic wave testing is analysed. The way of improving the performance of ferrite cores is put forward. Key words: ratio loss coefficient,hysteresis constant,DC-Bias,THD 近年来,变压器生产厂家和软磁铁氧体生产厂家,在电感器和变压器产品的总谐波失真指标控制上,进行了深入的探讨和广泛的合作,逐步弄清了一些似是而非的问题。从工艺技术上采取了不少有效措施,促进了质量问题的迅速解决。本文将就此热门话题作一些粗浅探讨。 一、 历史回顾 总谐波失真(Total harmonic distortion) ,简称THD,并不是什么新的概念,早在几十年前的载波通信技术中就已有严格要求<1>。1978年邮电部公布的标准YD/Z17-78“载波用铁氧体罐形磁心”中,规定了高μQ材料制作的无中心柱配对罐形磁心详细的测试电路和方法。如图一电路所示,利用LC组成的150KHz低通滤波器在高电平输入的情况下测量磁心产生的非线性失真。这种相对比较的实用方法,专用于无中心柱配对罐形磁心的谐波衰耗测试。 这种磁心主要用于载波电报、电话设备的遥测振荡器和线路放大器系统,其非线性失真有很严格的要求。 图中 ZD —— QF867 型阻容式载频振荡器,输出阻抗 150Ω, Ld47 —— 47KHz 低通滤波器,阻抗 150Ω,阻带衰耗大于61dB, Lg88 ——并联高低通滤波器,阻抗 150Ω,三次谐波衰耗大于61dB Ld88 ——并联高低通滤波器,阻抗 150Ω,三次谐波衰耗大于61dB FD —— 30~50KHz 放大器, 阻抗 150Ω, 增益不小于 43 dB,三次谐波衰耗b3(0)≥91 dB, DP —— Qp373 选频电平表,输入高阻抗, L ——被测无心罐形磁心及线圈, C ——聚苯乙烯薄膜电容器CMO-100V-707APF±0.5%,二只。 测量时,所配用线圈应用丝包铜电磁线SQJ9×0.12(JB661-75)在直径为16.1mm的线架上绕制 120 匝, (线架为一格) , 其空心电感值为 318μH(误差1%) 被测磁心配对安装好后,先调节振荡器频率为 36.6~40KHz, 使输出电平值为+17.4 dB, 即选频表在 22′端子测得的主波电平 (P2)为+17.4 dB,然后在33′端子处测得输出的三次谐波电平(P3), 则三次谐波衰耗值为:b3(+2)= P2+S+ P3 式中:S 为放大器增益dB 从以往的资料引证, 就可以发现谐波失真的测量是一项很精细的工作,其中测量系统的高、低通滤波器,信号源和放大器本身的三次谐波衰耗控制很严,阻抗必须匹配,薄膜电容器的非线性也有相应要求。滤波器的电感全由不带任何磁介质的大空心线圈绕成,以保证本身的“洁净” ,不至于造成对磁心分选的误判。 为了满足多路通信整机的小型化和稳定性要求, 必须生产低损耗高稳定磁心。上世纪 70 年代初,1409 所和四机部、邮电部各厂,从工艺上改变了推板空气窑烧结,出窑后经真空罐冷却的落后方式,改用真空炉,并控制烧结、冷却气氛。技术上采用共沉淀法攻关试制出了μQ乘积 60 万和 100 万的低损耗高稳定材料,在此基础上,还实现了高μ7000~10000材料的突破,从而大大缩短了与国外企业的技术差异。当时正处于通信技术由FDM(频率划分调制)向PCM(脉冲编码调制) 转换时期, 日本人明石雅夫发表了μQ乘积125 万为 0.8×10 ,100KHz)的超优铁氧体材料<3>,其磁滞系数降为优铁
上传时间: 2014-12-24
上传用户:7891
AL-LJ(K)系列零序电流互感器 保定奥兰电气科技有限责任公司生产的AL-LJ(K)系列零序电流互感器经电力工业部电气设备质量检测中心检测,质量优于国标GB1208-1997《电流互感器》,具有精度高,线性度好,运行可靠,安装方便,外型美观等特点。 零序电流互感器(电缆型)的孔径范围为Ф40~Ф360,有各种容量、变比、准确限值系数,可与小电流接地选线装置、继电器、仪表等配套使用,实现对系统的检测和保护。装置具有灵敏度高,线性度好等优点。产品分整体式和组合式两类。互感器采用工程塑料外壳、树脂浇注全密封;外型美观、安装方便、节省安装空间、规格品种多,可适用各种保护装置和电力系统各种运行方式(中性点接地,中性点不接地,大电阻接地,小电阻接地和消弧线圈接地)的需要。 空格:用于小电流接地选线装置 A:与DD11/60型继电器配合使用 J:用于微机型继电保护 B:与DL11/0.2型继电器配合使用 保定市奥兰电气科技有限责任公司开发生产的零序电流互感器是一种套在电缆上的CT,它的一次绕组为穿过CT内孔的三相一次导体电缆,它的一次电流是一次三相电流的向量和(在正常、三相平衡时为0),当发生一次系统单相接地时三相平衡关系被打破,这时零序电流互感器的二次就有电流输出,供给保护装置,实现保护和监控。 零序电流互感器的一次绝缘就是电缆自身绝缘,所以这种零序电流互感器可以套在任一电压等级的电缆上。
标签: 零序电流互感器
上传时间: 2013-10-30
上传用户:fengzimili
本书分三部分介绍在美国广泛应用的、高功能的M68HC11系列单片机(8位机 ,Motorola公司)。内容包括M68HC11的结构与其基本原理、开发工具EVB(性能评估板)以及开发和应用技术。本书在介绍单片机硬、软件的基础上,进一步介绍了在美国实验室内,如何应用PC机及EVB来进行开发工作。通过本书的介绍,读者可了解这种单片机的原理并学会开发和应用方法。本书可作为大专院校单片机及其实验的教材(本科、短训班)。亦可供开发、应用单片机的各专业(计算机、机电、化工、纺织、冶金、自控、航空、航海……)有关技术人员参考。 第一部分 M68HC11 结构与原理Motorola单片机 1 Motorla单片机 1.1 概述 1.1.1 Motorola 单片机发展概况(3) 1.1.2 Motorola 单片机结构特点(4) 1.2 M68HC11系列单片机(5) 1.2.1 M68HC11产品系列(5) 1.2.2 MC68HC11E9特性(6) 1.2.3 MC68HC11E9单片机引脚说明(8) 1.3 Motorola 32位单片机(14) 1.3.1中央处理器(CPU32)(15) 1.3.2 定时处理器(TPU)(16) 1.3.3 串行队列模块(QSM)(16) 1.3.4 系统集成模块 (SIM)(16) 1.3.5 RAM(17) 2 系统配置与工作方式 2.1 系统配置(19) 2.1.1 配置寄存器CONFIG(19) 2.1.2 CONFIG寄存器的编程与擦除(20) 2?2 工作方式选择(21) 2.3 M68HC11的工作方式(23) 2.3.1 普通单片工作方式(23) 2.3.2 普通扩展工作方式(23) 2.3.3 特殊自举方式(27) 2.3.4 特殊测试方式(28) 3 中央处理器(CPU)与片上存储器 3.1 CPU寄存器(31) 3?1?1 累加器A、B和双累加器D(32) 3.1.2 变址寄存器X、Y(32) 3.1.3 栈指针SP(32) 3.1.4 程序计数器PC(33) 3.1.5 条件码寄存器CCR(33) 3.2 片上存储器(34) 3.2.1 存储器分布(34) 3.2.2 RAM和INIT寄存器(35) 3.2.3 ROM(37) 3.2.4 EEPROM(37) 3.3 M68HC11 CPU的低功耗方式(39) 3.3.1 WAIT方式(39) 3.3.2 STOP方式(40) 4 复位和中断 4.1 复位(41) 4.1.1 M68HC11的系统初始化条件(41) 4.1.2 复位形式(43) 4.2 中断(48) 4.2.1 条件码寄存器CCR中的中断屏蔽位(48) 4.2.2 中断优先级与中断矢量(49) 4.2.3 非屏蔽中断(52) 4.2.4 实时中断(53) 4.2.5 中断处理过程(56) 5 M68HC11指令系统 5.1 M68HC11寻址方式(59) 5.1.1 立即寻址(IMM)(59) 5.1.2 扩展寻址(EXT)(60) 5.1.3 直接寻址(DIR)(60) 5.1.4 变址寻址(INDX、INDY)(61) 5.1.5 固有寻址(INH)(62) 5.1.6 相对寻址(REL)(62) 5.1.7 前置字节(63) 5.2 M68HC11指令系统(63) 5.2.1 累加器和存储器指令(63) 5.2.2 栈和变址寄存器指令(68) 5.2.3 条件码寄存器指令(69) 5.2.4 程序控制指令(70) 6 输入与输出 6.1 概述(73) 6.2 并行I/O口(74) 6.2.1 并行I/O寄存器(74) 6.2.2 应答I/O子系统(76) 6?3 串行通信接口SCI(82) 6.3.1 基本特性(83) 6.3.2 数据格式(83) 6.3.3 SCI硬件结构(84) 6.3.4 SCI寄存器(86) 6.4 串行外围接口SPI(92) 6.4.1 SPI特性(92) 6.4.2 SPI引脚信号(92) 6.4.3 SPI结构(93) 6.4.4 SPI寄存器(95) 6.4.5 SPI系统与外部设备进行串行数据传输(99) 7 定时器系统与脉冲累加器 7.1 概述(105) 7.2 循环计数器(107) 7.2.1 时钟分频器(107) 7.2.2 计算机正常工作监视功能(110) 7.2.3 定时器标志的清除(110) 7.3 输入捕捉功能(111) 7.3.1 概述(111) 7.3.2 定时器输入捕捉锁存器(TIC1、TIC2、TIC3) 7.3.3 输入信号沿检测逻辑(113) 7.3.4 输入捕捉中断(113) 7.4 输出比较功能(114) 7.4.1 概述(114) 7.4.2 输出比较功能使用的寄存器(116) 7.4.3 输出比较示例(118) 7.5 脉冲累加器(119) 7.5.1 概述(119) 7.5.2 脉冲累加器控制和状态寄存器(121) 8 A/D转换系统 8.1 电荷重新分布技术与逐次逼近算法(125) 8.1.1 基本电路(125) 8.1.2 A/D转换逐次逼近算法原理(130) 8.2 M68HC11中A/D转换的实现方法(131) 8.2.1 逐次逼近A/D转换器(131) 8.2.2 控制寄存器(132) 8.2.3 系统控制逻辑(135)? 9 单片机的内部操作 9.1 用立即> 图书前言 美国Motorola公司从80年代中期开始推出的M68HC11系列单片机是当今功能最强、性能/价格比最好的八位单片微计算机之一。在美国,它已被广泛地应用于教学和各种工业控制系统中。? 该单片机有丰富的I/O功能,完善的系统保护功能和软件控制的节电工作方式 。它的指令系统与早期Motorola单片机MC6801等兼容,同时增加了91条新指令。其中包含16位乘法、除法运算指令等。 为便于用户开发和应用M68HC11单片机,Motorola公司提供了多种开发工具。M68HC11 EVB (Evaluation Board)性能评估板就是一种M68HC11系列单片机的廉价开发工具。它既可用来 调试用户程序,又可在仿真方式下运行。为方便用户,M68HC11 EVB可与IBM?PC连接 ,借助于交叉汇编、通信程序等软件,在IBM?PC上调试程序。? 本书分三部分(共15章)介绍了M68HC11的结构和基本原理、开发工具-EVB及开发应用实例等。第一部分(1~9章),介绍M68HC11的结构和基本原理。包括概述,系统配置与工作方式、CPU和存储器、复位和中断、指令系统、I/O、定时器系统和脉冲累加器、A/D转换系统、单片机的内部操作等。第二部分(10~11章),介绍M68HC11 EVB的原理和技术特性以及EVB的应用。第三部分(12~15章),介绍M68HC11的开发与应用技术。包括基本的编程练习、应用程序设计、接口实验、接口设计及应用等。 读者通过学习本书,不仅可了解M68HC11的硬件、软件,而且可了解使用EVB开发和应用M68HC11单片机的方法。在本书的第三部分专门提供了一部分实验和应用程序。? 本书系作者张宁作为高级访问学者,应邀在美国马萨诸塞州洛厄尔大学(University of Massachusetts Lowell)工作期间完成的。全书由张宁执笔。在编著过程中,美国洛厄尔大学的R·代克曼教授?(Professor Robert J. Dirkman)多次与张宁一起讨论、研究,并提供部分资料及实验数据。参加编写和审校等工作的还有王云霞、孙晓芳、刘安鲁、张籍、来安德、张杨等同志。? 为将M68HC11系列单片机尽快介绍给我国,美国Motorola公司的Terrence M.S.Heng先生曾大力支持本书的编著和出版。在此表示衷心感谢。
上传时间: 2013-10-27
上传用户:rlgl123
本书针对Atmel公司的AVR系列单片机和ImageCraft公司的ICC AVR开发环境,详细地介绍了AT90LS8535的C语言程序设计。全书共有13章,其内容既涉及到了单片机的结构原理、指令系统、内容资源和外部功能扩展,又包含了单片机的编程工具——ICC AVR C编程器的数据类型、控制流、函数和指针等。本书的特点是:深入浅出,从最基本的概念开始,循序渐进地讲解单片机的应用开发;列举了大量实例,使读者能从实际应用中掌握单片机的开发与应用技术。本书适合作为从事单片机开发人员的参考用书。书中先后讲解了C语言基础、AVR单片机基础,并举了一些简单的实例。本书非常适合初学者。 【目录信息】 第1章 单片机系统概述 1. 1 AVR系列单片机的特点 1. 2 AT90系列单片机简介 第2章 AT90LS8535单片机的基础知识 2. 1 AT90LS8535单片机的总体结构 2. 1. 1 AT90LS8535单片机的中央处理器 2. 1. 2 AT90LS8535单片机的存储器组织 2. 1. 3 AT90LS8535单片机的I/O接口 2. 1. 4 AT90LS8535单片机的内部资源 2. 1. 5 AT90LS8535单片机的时钟电路 2. 1. 6 AT90LS8535单片机的系统复位 2. 1. 7 AT90LS8535单片机的节电方式 2. 1. 8 AT90LS8535单片机的芯片引脚 2. 2 AT90LS8535单片机的指令系统 2. 2. 1 汇编指令格式 2. 2. 2 寻址方式 2. 2. 3 伪指令 2. 2. 4 指令类型及数据操作方式 2. 3 应用程序设计 2. 3. 1 程序设计方法 2. 3. 2 应用程序举例 第3章 AT90LS8535单片机的C编程 3. 1 支持高级语言编程的AVR系列单片机 3. 2 AVR的C编译器 3. 3 ICCAVR介绍 3. 3. 1 安装ICCAVR 3. 3. 2 设置ICCAVR 3. 4 用ICCAVR编写应用程序 3. 5 下载程序文件 第4章 数据类型. 运算符和表达式 4. 1 ICCAVR支持的数据类型 4. 2 常量与变量 4. 2. 1 常量 4. 2. 2 变量 4. 3 AT90LS8535的存储空间 4. 4 算术和赋值运算 4. 4. 1 算术运算符和算术表达式 4. 4. 2 赋值运算符和赋值表达式 4. 5 逻辑运算 4. 6 关系运算 4. 7 位操作 4. 7. 1 位逻辑运算 4. 7. 2 移位运算 4. 8 逗号运算 第5章 控制流 5. 1 C语言的结构化程序设计 5. 1. 1 顺序结构 5. 1. 2 选择结构 5. 1. 3 循环结构 5. 2 选择语句 5. 2. 1 if语句 5. 2. 2 switch分支 5. 2. 3 选择语句的嵌套 5. 3 循环语句 5. 3. 1 while语句 5. 3. 2 do…while语句 5. 3. 3 for语句 5. 3. 4 循环语句嵌套 5. 3. 5 break语句和continue语句 第6章 函数 6. 1 函数的定义 6. 1. 1 函数的定义的一般形式 6. 1. 2 函数的参数 6. 1. 3 函数的值 6. 2 函数的调用 6. 2. 1 函数的一般调用 6. 2. 2 函数的递归调用 6. 2. 3 函数的嵌套调用 6. 3 变量的类型及其存储方式 6. 3. 1 局部变量 6. 3. 2 局部变量的存储方式 6. 3. 3 全局变量 6. 3. 4 全局变量的存储方式 6. 4 内部函数和外部函数 6. 4. 1 内部函数 6. 4. 2 外部函数 第7章 指针 7. 1 指针和指针变量 7. 2 指针变量的定义和引用 7. 2. 1 指针变量的定义 7. 2. 2 指针变量的引用 7. 2. 3 指针变量作为函数参数 7. 3 数组与指针 7. 3. 1 指向数组元素的指针变量 7. 3. 2 数组元素的引用 通过指针 7. 3. 3 数组名作为函数参数 7. 3. 4 指向多维数组的元素的指针变量 7. 4 字符串与指针 7. 4. 1 字符串的表示形式 7. 4. 2 字符串指针变量与字符数组的区别 7. 5 函数与指针 7. 5. 1 函数指针变量 7. 5. 2 指针型函数 7. 6 指向指针的指针 7. 7 有关指针数据类型和运算小结 7. 7. 1 有关指针的数据类型的小结 7. 7. 2 指针运算的小结 第8章 结构体和共用体 8. 1 结构体的定义和引用 8. 1. 1 结构体类型变量的定义 8. 1. 2 结构体类型变量的引用 8. 2 结构类型的说明 8. 3 结构体变量的初始化和赋值 8. 3. 1 结构体变量的初始化 8. 3. 2 结构体变量的赋值 8. 4 结构体数组 8. 4. 1 结构体数组的定义 8. 4. 2 结构体数组的初始化 8. 5 指向结构体类型变量的指针 8. 5. 1 指向结构体变量的指针 8. 5. 2 指向结构体数组的指针 8. 5. 3 指向结构体变量的指针做函数参数 8. 6 共用体 8. 6. 1 共用体的定义 8. 6. 2 共用体变量的引用 第9章 A190LS8535的内部资源 9. 1 I/O 口 9. 1. 1 端口A 9. 1. 2 端口B 9. 1. 3 端口C 9. 1. 4 端口D 9. 1. 5 I/O口的编程 9. 2 中断 9. 2. 1 单片机的中断功能 9. 2. 2 AT90LS8535单片机的中断系统 9. 2. 3 1CCAVRC编译器的中断操作 9. 2. 4 中断的编程 9. 3 串行数据通信 9. 3. 1 数据通信基础 9. 3. 2 AT90LS8535的同步串行接口 9. 3. 3 AT90LS8535的异步串行接口 9. 4 定时/计数器 9. 4. 1 定时/计数器的分频器 9. 4. 2 8位定时/计数器0 9. 4. 3 16位定时/计数器1 9. 4. 4 8位定时/计数器2 9. 5 EEPROM 9. 5. 1 与EEPROM有关的寄存器 9. 5. 2 EEPROM读/写操作 9. 5. 3 EEPROM的应用举例 9. 6 模拟量输入接口 9. 6. 1 模数转换器的结构 9. 6. 2 ADC的使用 9. 6. 3 与模数转换器有关的寄存器 9. 6. 4 ADC的噪声消除 9. 6. 5 ADC的应用举例 9. 7 模拟比较器 9. 7. 1 模拟比较器的结构 9. 7. 2 与模拟比较器有关的寄存器 9. 7. 3 模拟比较器的应用举例 第10章 AT90LS8535的人机接口编程 10. 1 键盘接口 10. 1. 1 非矩阵式键盘 10. 1. 2 矩阵式键盘 10. 2 LED显示输出 10. 2. 1 LED的静态显示 10. 2. 2 LED的动态扫描显示 10. 2. 3 动态扫描显示专用芯片MC14489 10. 3 LCD显示输出 10. 3. 1 字符型LCD 10. 3. 2 点阵型LCD 10. 4 ISD2500系列语音芯片的编程 10. 4. 1 ISD2500的片内结构和引脚 10. 4. 2 ISD2500的操作 10. 4. 3 ISD2500和单片机的接口及编程 10. 5 TP-uP微型打印机 10. 5. 1 TP-uP打印机的接口和逻辑时序 10. 5. 2 P-uP打印机的打印命令和字符代码 10. 5. 3 AT90LS8535与TP-uP系列打印机的接口及编程 10. 6 IC卡 10. 6. 1 IC卡读写装置 10. 6. 2 IC卡软件 第11章 AT90LS8535的外围扩展 11. 1 简单I/O扩展芯片 11. 1. 1 用74LS377扩展数据输出接口 11. 1. 2 数据输入接口 11. 2 模拟量输出 11. 2. 1 D/A转换器简介 11. 2. 2 8位数模转换器DAC0832 11. 2. 3 8位数模转换器与单片机的接口及编程 11. 2. 4 12位数模转换器DACl230 11. 2. 5 12位数模转换器与单片机的接口及编程 11. 3 可编程I/O扩展芯片8255A 11. 3. 1 8255A的引脚和内部结构 11. 3. 2 8255A的工作方式 11. 3. 3 8255A的控制字 11. 3. 4 AT90LS8535和8255A的接口 11. 4 带片内RAM的I/O扩展芯片8155 11. 4. 1 8155的引脚和内部结构. 11. 4. 2 8155的I/O口工作方式 11. 4. 3 8155的定时/计数器 11. 4. 4 8155的命令和状态字 11. 4. 5 AT90LS8535与8155的接口及编程 11. 5 定时/计数器芯片8253 11. 5. 1 8253的信号引脚和逻辑结构 11. 5. 2 8253的工作方式 11. 5. 3 8253的控制字 11. 5. 4 AT90LS8535与8253的接口及编程 11. 6 实时时钟芯片DS1302 11. 6. 1 DS1302的引脚和内部结构 11. 6. 2 DS1302的控制方式 11. 6. 3 AT90LS8535与DS1302的接口与编程 11. 7 数字温度传感器DS18B20 11. 7. 1 DSl8B20的引脚和内部结构 11. 7. 2 DS18B20的温度测量 11. 7. 3 AT90LS8535与DS18B20的接口与编程 第12章 AT90LS8535的通信编程 12. 1 串口通信 12. 1. 1 异步串口UART通信 12. 1. 2 同步串口SPI通信 12. 2 I2C总线 12. 2. 1 I2C总线协议 12. 2. 2 采用AT90LS8535的并行I/O口模拟I2C总线 12. 3 CAN总线 12. 3. 1 CAN总线的特点 12. 3. 2 CAN协议的信息格式 12. 3. 3 CAN控制器SJA1000 12. 3. 4 AT90LS8535与SJA1000的接口及编程 12. 4 AT90LS8535单片机与PC的串行通信 12. 4. 1 基于VC 6. 0的PC串口通信 12. 4. 2 应用实例 第13章 系统设计中的程序处理方法 13. 1 数字滤波处理 13. 1. 1 平滑滤波 13. 1. 2 中值滤波 13. 1. 3 程序判断滤波 13. 2 非线性处理 13. 2. 1 查表法 13. 2. 2 线性插值法
上传时间: 2013-11-04
上传用户:元宵汉堡包
PSHLY-B回路电阻测试仪介绍
上传时间: 2013-11-05
上传用户:木子叶1
针对目前使用的RS232接口数字化B超键盘存在PC主机启动时不能设置BIOS,提出一种PS2键盘的设计方法。基于W78E052D单片机,采用8通道串行A/D转换器设计了8个TGC电位器信息采集电路,电位器位置信息以键盘扫描码序列形式发送,正交编码器信号通过XC9536XL转换为单片机可接收的中断信号,软件接收到中断信息后等效处理成按键。结果表明,在满足开机可设置BIOS同时,又可实现超声特有功能,不需要专门设计驱动程序,接口简单,成本低。 Abstract: Aiming at the problem of the digital ultrasonic diagnostic imaging system keyboard with RS232 interface currently used couldn?蒺t set the BIOS when the PC boot, this paper proposed a design method of PS2 keyboards. Based on W78E052D microcontroller,designed eight TGC potentiometers information acquisition circuit with 8-channel serial A/D converter, potentiometer position information sent out with keyboard scan code sequentially.The control circuit based on XC9536 CPLD is used for converting the mechanical actions of the encoders into the signals that can be identified by the MCU, software received interrupt information and equivalently treatmented as key. The results show that the BIOS can be set to meet the boot, ultrasound specific functionality can be achieved at the same time, it does not require specially designed driver,the interface is simple and low cost.
上传时间: 2013-10-10
上传用户:asdfasdfd
HT49 MCU的可编程分频器(PFD)使用指南 本文主要介绍 HT49 单片机可编程分频器(PFD)的使用及注意事项。
上传时间: 2013-11-03
上传用户:crazyer
MSP430系列flash型超低功耗16位单片机MSP430系列单片机在超低功耗和功能集成等方面有明显的特点。该系列单片机自问世以来,颇受用户关注。在2000年该系列单片机又出现了几个FLASH型的成员,它们除了仍然具备适合应用在自动信号采集系统、电池供电便携式装置、超长时间连续工作的设备等领域的特点外,更具有开发方便、可以现场编程等优点。这些技术特点正是应用工程师特别感兴趣的。《MSP430系列FLASH型超低功耗16位单片机》对该系列单片机的FLASH型成员的原理、结构、内部各功能模块及开发方法与工具作详细介绍。MSP430系列FLASH型超低功耗16位单片机 目录 第1章 引 论1.1 MSP430系列单片机1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 结构概述2.1 引 言2.2 CPU2.3 程序存储器2.4 数据存储器2.5 运行控制2.6 外围模块2.7 振荡器与时钟发生器第3章 系统复位、中断及工作模式3.1 系统复位和初始化3.1.1 引 言3.1.2 系统复位后的设备初始化3.2 中断系统结构3.3 MSP430 中断优先级3.3.1 中断操作--复位/NMI3.3.2 中断操作--振荡器失效控制3.4 中断处理 3.4.1 SFR中的中断控制位3.4.2 中断向量地址3.4.3 外部中断3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗应用的要点23第4章 存储空间4.1 引 言4.2 存储器中的数据4.3 片内ROM组织4.3.1 ROM 表的处理4.3.2 计算分支跳转和子程序调用4.4 RAM 和外围模块组织4.4.1 RAM4.4.2 外围模块--地址定位4.4.3 外围模块--SFR4.5 FLASH存储器4.5.1 FLASH存储器的组织4.5.2 FALSH存储器的数据结构4.5.3 FLASH存储器的控制寄存器4.5.4 FLASH存储器的安全键值与中断4.5.5 经JTAG接口访问FLASH存储器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序计数器PC5.1.2 系统堆栈指针SP5.1.3 状态寄存器SR5.1.4 常数发生寄存器CG1和CG25.2 寻址模式5.2.1 寄存器模式5.2.2 变址模式5.2.3 符号模式5.2.4 绝对模式5.2.5 间接模式5.2.6 间接增量模式5.2.7 立即模式5.2.8 指令的时钟周期与长度5.3 指令组概述5.3.1 双操作数指令5.3.2 单操作数指令5.3.3 条件跳转5.3.4 模拟指令的简短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 无符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符号数相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 无符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符号数乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的软件限制6.4.1 寻址模式6.4.2 中断程序6.4.3 MACS第7章 基础时钟模块7.1 基础时钟模块7.2 LFXT1与XT27.2.1 LFXT1振荡器7.2.2 XT2振荡器7.2.3 振荡器失效检测7.2.4 XT振荡器失效时的DCO7.3 DCO振荡器7.3.1 DCO振荡器的特性7.3.2 DCO调整器7.4 时钟与运行模式7.4.1 由PUC启动7.4.2 基础时钟调整7.4.3 用于低功耗的基础时钟特性7.4.4 选择晶振产生MCLK7.4.5 时钟信号的同步7.5 基础时钟模块控制寄存器7.5.1 DCO时钟频率控制7.5.2 振荡器与时钟控制寄存器7.5.3 SFR控制位第8章 输入输出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中断控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口逻辑第9章 看门狗定时器WDT9.1 看门狗定时器9.2 WDT寄存器9.3 WDT中断控制功能9.4 WDT操作第10章 16位定时器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定时器模式控制10.2.2 时钟源选择和分频10.2.3 定时器启动10.3 定时器模式10.3.1 停止模式10.3.2 增计数模式10.3.3 连续模式10.3.4 增/减计数模式10.4 捕获/比较模块10.4.1 捕获模式10.4.2 比较模式10.5 输出单元10.5.1 输出模式10.5.2 输出控制模块10.5.3 输出举例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕获/比较控制寄存器CCTLx10.6.4 Timer_A中断向量寄存器10.7 Timer_A的UART应用 第11章 16位定时器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定时器长度11.2.2 定时器模式控制11.2.3 时钟源选择和分频11.2.4 定时器启动11.3 定时器模式11.3.1 停止模式11.3.2 增计数模式11.3.3 连续模式11.3.4 增/减计数模式11.4 捕获/比较模块11.4.1 捕获模式11.4.2 比较模式11.5 输出单元11.5.1 输出模式11.5.2 输出控制模块11.5.3 输出举例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕获/比较控制寄存器CCTLx11.6.4 Timer_B中断向量寄存器第12章 USART通信模块的UART功能12.1 异步模式12.1.1 异步帧格式12.1.2 异步通信的波特率发生器12.1.3 异步通信格式12.1.4 线路空闲多机模式12.1.5 地址位多机通信格式12.2 中断和中断允许12.2.1 USART接收允许12.2.2 USART发送允许12.2.3 USART接收中断操作12.2.4 USART发送中断操作12.3 控制和状态寄存器12.3.1 USART控制寄存器UCTL12.3.2 发送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率选择和调整控制寄存器12.3.5 USART接收数据缓存URXBUF12.3.6 USART发送数据缓存UTXBUF12.4 UART模式,低功耗模式应用特性12.4.1 由UART帧启动接收操作12.4.2 时钟频率的充分利用与UART的波特率12.4.3 多处理机模式对节约MSP430资源的支持12.5 波特率计算 第13章 USART通信模块的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的从模式13.2 中断与控制功能 13.2.1 USART接收/发送允许位及接收操作13.2.2 USART接收/发送允许位及发送操作13.2.3 USART接收中断操作13.2.4 USART发送中断操作13.3 控制与状态寄存器13.3.1 USART控制寄存器13.3.2 发送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率选择和调制控制寄存器13.3.5 USART接收数据缓存URXBUF13.3.6 USART发送数据缓存UTXBUF第14章 比较器Comparator_A14.1 概 述14.2 比较器A原理14.2.1 输入模拟开关14.2.2 输入多路切换14.2.3 比较器14.2.4 输出滤波器14.2.5 参考电平发生器14.2.6 比较器A中断电路14.3 比较器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比较器A应用14.4.1 模拟信号在数字端口的输入14.4.2 比较器A测量电阻元件14.4.3 两个独立电阻元件的测量系统14.4.4 比较器A检测电流或电压14.4.5 比较器A测量电流或电压14.4.6 测量比较器A的偏压14.4.7 比较器A的偏压补偿14.4.8 增加比较器A的回差第15章 模数转换器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC内核15.2.2 参考电平15.3 模拟输入与多路切换15.3.1 模拟多路切换15.3.2 输入信号15.3.3 热敏二极管的使用15.4 转换存储15.5 转换模式15.5.1 单通道单次转换模式15.5.2 序列通道单次转换模式15.5.3 单通道重复转换模式15.5.4 序列通道重复转换模式15.5.5 转换模式之间的切换15.5.6 低功耗15.6 转换时钟与转换速度15.7 采 样15.7.1 采样操作15.7.2 采样信号输入选择15.7.3 采样模式15.7.4 MSC位的使用15.7.5 采样时序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 转换存储寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中断标志寄存器ADC12IFG.x和中断允许寄存器ADC12IEN.x15.8.5 中断向量寄存器ADC12IV15.9 ADC12接地与降噪第16章 FLASH型芯片的开发16.1 开发系统概述16.1.1 开发技术16.1.2 MSP430系列的开发16.1.3 MSP430F系列的开发16.2 FLASH型的FET开发方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 标准复位过程和进入BSL过程16.3.2 BSL的UART协议16.3.3 数据格式16.3.4 退出BSL16.3.5 保护口令16.3.6 BSL的内部设置和资源附录A 寻址空间附录B 指令说明B.1 指令汇总B.2 指令格式B.3 不增加ROM开销的模拟指令B.4 指令说明(字母顺序)B.5 用几条指令模拟的宏指令附录C MSP430系列单片机参数表附录D MSP430系列单片机封装形式附录E MSP430系列器件命名
上传时间: 2014-04-28
上传用户:sssnaxie
微机接口技术试题:《微机接口技术》模拟试题 一、 选择题:(每空1分,共20分)1. CPU与外设之间交换数据常采用 、 、 和 四种方式,PC机键盘接口采用 传送方式。 ⒉ 当进行DMA方式下的写操作时,数据是从 传送到 __中。 ⒊ PC总线、ISA总线和EISA总线的地址线分别为: 、 和 根。 ⒋ 8254定时/计数器内部有 个端口、共有 种工作方式。 ⒌8255的A1和A0引脚分别连接在地址总线的A1和A0,当命令端口的口地址为317H时,则A口、B口、C口的口地址分别为 、 、 。 ⒍ PC微机中最大的中断号是 、最小的中断号是 。 ⒎PC微机中键盘是从8255的 口得到按键数据。 ⒏ 串行通信中传输线上即传输_________,又传输_________。 二、选择题:(每题2分,共10分)⒈ 设串行异步通信每帧数据格式有8个数据位、无校验、一个停止位,若波特率为9600B/S,该方式每秒最多能传送( )个字符。 ① 1200 ② 150 ③ 960 ④ 120 2.输出指令在I/O接口总线上产生正确的命令顺序是( )。① 先发地址码,再发读命令,最后读数据。② 先发读命令、再发地址码,最后读数据。③ 先送地址码,再送数据,最后发写命令。④ 先送地址码,再发写命令、最后送数据。3 使用8254设计定时器,当输入频率为1MHZ并输出频率为100HZ时,该定时器的计数初值为( )。 ① 100 ② 1000 ③ 10000 ④ 其它 4 在PC机中5号中断,它的中断向地址是( )。 ① 0000H:0005H ② 0000H:0010H ③ 0000H:0014H ④ 0000H:0020H 5. 四片8259级联时可提供的中断请求总数为( )。 ① 29个 ② 30个 ③ 31个 ④ 32个 6. 下述总线中,组内都是外设串行总线为( )组。① RS-485、IDE、ISA。② RS-485、IEEE1394、USB。③ RS-485、PCI、IEEE1394。④ USB、SCSI、RS-232。 7. DMA在( )接管总线的控制权。① 申请阶段 ② 响应阶段 ③ 数据传送阶段 ④ 结束阶段 8. 中断服务程序入口地址是( )。 ① 中断向量表的指针 ② 中断向量 ③ 中断向量表 ④ 中断号
上传时间: 2013-11-16
上传用户:xiaoxiang
pic单片机实用教程(提高篇)以介绍PIC16F87X型号单片机为主,并适当兼顾PIC全系列,共分9章,内容包括:存储器;I/O端口的复位功能;定时器/计数器TMR1;定时器TMR2;输入捕捉/输出比较/脉宽调制CCP;模/数转换器ADC;通用同步/异步收发器USART;主控同步串行端口MSSP:SPI模式和I2C模式。突出特点:通俗易懂、可读性强、系统全面、学练结合、学用并重、实例丰富、习题齐全。<br>本书作为Microchip公司大学计划选择用书,可广泛适用于初步具备电子技术基础和计算机知识基础的学生、教师、单片机爱好者、电子制作爱好者、电器维修人员、电子产品开发设计者、工程技术人员阅读。本教程全书共分2篇,即基础篇和提高篇,分2册出版,以适应不同课时和不同专业的需要,也为教师和读者增加了一种可选方案。 第1章 EEPROM数据存储器和FIASH程序存储器1.1 背景知识1.1.1 通用型半导体存储器的种类和特点1.1.2 PIC单片机内部的程序存储器1.1.3 PIC单片机内部的EEPROM数据存储器1.1.4 PIC16F87X内部EEPROM和FIASH操作方法1.2 与EEPROM相关的寄存器1.3 片内EEPROM数据存储器结构和操作原理1.3.1 从EEPROM中读取数据1.3.2 向EEPROM中烧写数据1.4 与FLASH相关的寄存器1.5 片内FLASH程序存储器结构和操作原理1.5.1 读取FLASH程序存储器1.5.2 烧写FLASH程序存储器1.6 写操作的安全保障措施1.6.1 写入校验方法1.6.2 预防意外写操作的保障措施1.7 EEPROM和FLASH应用举例1.7.1 EEPROM的应用1.7.2 FIASH的应用思考题与练习题第2章 输入/输出端口的复合功能2.1 RA端口2.1.1 与RA端口相关的寄存器2.1.2 电路结构和工作原理2.1.3 编程方法2.2 RB端口2.2.1 与RB端口相关的寄存器2.2.2 电路结构和工作原理2.2.3 编程方法2.3 RC端口2.3.1 与RC端口相关的寄存器2.3.2 电路结构和工作原理2.3.3 编程方法2.4 RD端口2.4.1 与RD端口相关的寄存器2.4.2 电路结构和工作原理2.4.3 编程方法2.5 RE端口2.5.1 与RE端口相关的寄存器2.5.2 电路结构和工作原理2.5.3 编程方法2.6 PSP并行从动端口2.6.1 与PSP端口相关的寄存器2.6.2 电路结构和工作原理2.7 应用举例思考题与练习题第3章 定时器/计数器TMR13.1 定时器/计数器TMR1模块的特性3.2 定时器/计数器TMR1模块相关的寄存器3.3 定时器/计数器TMR1模块的电路结构3.4 定时器/计数器TMR1模块的工作原理3.4.1 禁止TMR1工作3.4.2 定时器工作方式3.4.3 计数器工作方式3.4.4 TMR1寄存器的赋值与复位3.5 定时器/计数器TMR1模块的应用举例思考题与练习题第4章 定时器TMR24.1 定时器TMR2模块的特性4.2 定时器TMR2模块相关的寄存器4.3 定时器TMR2模块的电路结构4.4 定时器TMR2模块的工作原理4.4.1 禁止TMR2工作4.4.2 定时器工作方式4.4.3 寄存器TMR2和PR2以及分频器的复位4.4.4 TMR2模块的初始化编程4.5 定时器TMR2模块的应用举例思考题与练习题第5章 输入捕捉/输出比较/脉宽调制CCP5.1 输入捕捉工作模式5.1.1 输入捕捉摸式相关的寄存器5.1.2 输入捕捉模式的电路结构5.1.3 输入捕捉摸式的工作原理5.1.4 输入捕捉摸式的应用举例5.2 输出比较工作模式5.2.1 输出比较模式相关的寄存器5.2.2 输出比较模式的电路结构5.2.3 输出比较模式的工作原理5.2.4 输出比较模式的应用举例5.3 脉宽调制输出工作模式5.3.1 脉宽调制模式相关的寄存器5.3.2 脉宽调制模式的电路结构5.3.3 脉宽调制模式的工作原理5.3.4 脉定调制模式的应用举例5.4 两个CCP模块之间相互关系思考题与练习题第6章 模/数转换器ADC6.1 背景知识6.1.1 ADC种类与特点6.1.2 ADC器件的工作原理6.2 PIC16F87X片内ADC模块6.2.1 ADC模块相关的寄存器6.2.2 ADC模块结构和操作原理6.2.3 ADC模块操作时间要求6.2.4 特殊情况下的A/D转换6.2.5 ADC模块的转换精度和分辨率6.2.6 ADC模块的内部动作流程和传递函数6.2.7 ADC模块的操作编程6.3 PIC16F87X片内ADC模块的应用举例思考题与练习题第7章 通用同步/异步收发器USART7.1 串行通信的基本概念7.1.1 串行通信的两种基本方式7.1.2 串行通信中数据传送方向7.1.3 串行通信中的控制方式7.1.4 串行通信中的码型、编码方式和帧结构7.1.5 串行通信中的检错和纠错方式7.1.6 串行通信组网方式7.1.7 串行通信接口电路和参数7.1.8 串行通信的传输速率7.2 PIC16F87X片内通用同步/异步收发器USART模块7.2.1 与USART模块相关的寄存器7.2.2 USART波特率发生器BRG7.2.3 USART模块的异步工作方式7.2.4 USART模块的同步主控工作方式7.2.5 USART模块的同步从动工作方式7.3 通用同步/异步收发器USART的应用举例思考题与练习题第8章 主控同步串行端口MSSP——SPI模式8.1 SPI接口的背景知识8.1.1 SPI接口信号描述8.1.2 基于SPI的系统构成方式8.1.3 SPI接口工作原理8.1.4 兼容的MicroWire接口8.2 PIC16F87X的SPI接口8.2.1 SPI接口相关的寄存器8.2.2 SPI接口的结构和操作原理8.2.3 SPI接口的主控方式8.2.4 SPI接口的从动方式8.3 SPI接口的应用举例思考题与练习题第9章 主控同步串行端口MSSP——I(平方)C模式9.1 I(平方)C总线的背景知识9.1.1 名词术语9.1.2 I(平方)C总线的技术特点9.1.3 I(平方)C总线的基本工作原理9.1.4 I(平方)C总线信号时序分析9.1.5 信号传送格式9.1.6 寻址约定9.1.7 技术参数9.1.8 I(平方)C器件与I(平方)C总线的接线方式9.1.9 相兼容的SMBus总线9.2 与I(平方)C总线相关的寄存器9.3 典型信号时序的产生方法9.3.1 波特率发生器9.3.2 启动信号9.3.3 重启动信号9.3.4 应答信号9.3.5 停止信号9.4 被控器通信方式9.4.1 硬件结构9.4.2 被主控器寻址9.4.3 被控器接收——被控接收器9.4.4 被控器发送——被控发送器9.4.5 广播式寻址9.5 主控器通信方式9.5.1 硬件结构9.5.2 主控器发送——主控发送器9.5.3 主控器接收——主控接收器9.6 多主通信方式下的总线冲突和总线仲裁9.6.1 发送和应答过程中的总线冲突9.6.2 启动过程中的总线冲突9.6.3 重启动过程中的总线冲突9.6.4 停止过程中的总线冲突9.7 I(平方)C总线的应用举例思考题与练习题附录A 包含文件P16F877.INC附录B 新版宏汇编器MPASM伪指令总表参考文献
上传时间: 2013-12-14
上传用户:xiaoyuer