指出了非线性动态信号参数辨识的重要性;分析了目前采用的方法的不足;对非正交复Morlet小波满足Mercy条件和再生性的命题作了证明;用复Morlet小波构建出一种核函数
指出了非线性动态信号参数辨识的重要性;分析了目前采用的方法的不足;对非正交复Morlet小波满足Mercy条件和再生性的命题作了证明;用复Morlet小波构建出一种核函数,与主分量分析方法相结合,对非线性动态信号进行参数辨识和预测;仿真结果验证了该方法的正确性和有效性,表明该方法具有较好的理论价值和...
指出了非线性动态信号参数辨识的重要性;分析了目前采用的方法的不足;对非正交复Morlet小波满足Mercy条件和再生性的命题作了证明;用复Morlet小波构建出一种核函数,与主分量分析方法相结合,对非线性动态信号进行参数辨识和预测;仿真结果验证了该方法的正确性和有效性,表明该方法具有较好的理论价值和...
模式识别PCA+LDA的C++源代码,用于图像的主分量分析...
一个关于混沌序列的噪声压缩程序,主要基于主分量分析方法,消噪效果非常好。模拟信号上加了100 %噪声...
Matlab编写的PLS核心算法,适用于主元分析方面的应用...
现有的代数特征的抽取方法绝大多数采用一维的方法,即首先将图像转换为一维向量,再用主分量分析(PCA),Fisher线性鉴别分析(LDA),Fisherfaces式核主分量分析(KPCA)等方法抽取特征,然后用适合的分类器分类。针对一维方法维数过高,计算量大,协方差矩阵常常是奇异矩阵等不足,提出了二维...