虫虫首页| 资源下载| 资源专辑| 精品软件
登录| 注册

串联补偿

串联补偿[1]是一种将无功补偿装置通过串联的方式接入线路进行无功补偿的技术。串联补偿分为固定式和可控式两类,前者的有效容抗值是不能变化的,只能工作在补偿和不补偿两种状态,暂态稳定性相对较差;后者较前者增加了旁路晶闸管和电感,通过对晶闸管触发角的控制,可以实现四种工作模式:闭锁模式;容抗调节模式;旁路模式;感抗调节模式,进而增加了系统稳定性,但其也有不足的方面:技术要求高,成本高,同时,串补装置对保护也有一定的影响。在实际工程中,往往是两者相互配合,共同构建一套串联补偿系统。
  • 动态匹配换能器的超声波电源控制策略.

    超声波电源广泛应用于超声波加工、诊断、清洗等领域,其负载超声波换能器是一种将超音频的电能转变为机械振动的器件。由于超声换能器是一种容性负载,因此换能器与发生器之间需要进行阻抗匹配才能工作在最佳状态。串联匹配能够有效滤除开关型电源输出方波存在的高次谐波成分,因此应用较为广泛。但是环境温度或元件老化等原因会导致换能器的谐振频率发生漂移,使谐振系统失谐。传统的解决办法就是频率跟踪,但是频率跟踪只能保证系统整体电压电流同频同相,由于工作频率改变了而匹配电感不变,此时换能器内部动态支路工作在非谐振状态,导致换能器功率损耗和发热,致使输出能量大幅度下降甚至停振,在实际应用中受到限制。所以,在跟踪谐振点调节逆变器开关频率的同时应改变匹配电感才能使谐振系统工作在最高效能状态。针对按固定谐振点匹配超声波换能器电感参数存在的缺点,本文应用耦合振荡法对换能器的匹配电感和耦合频率之间的关系建立数学模型,证实了匹配电感随谐振频率变化的规律。给出利用这一模型与耦合工作频率之间的关系动态选择换能器匹配电感的方法。经过分析比较,选择了基于磁通控制原理的可控电抗器作为匹配电感,通过改变电抗控制度调节电抗值。并给出了实现这一方案的电路原理和控制方法。最后本文以DSPTMS320F2812为核心设计出实现这一原理的超声波逆变电源。实验结果表明基于磁通控制的可控电抗器可以实现电抗值随电抗控制度线性无级可调,由于该电抗器输出正弦波,理论上没有谐波污染。具体采用复合控制策略,稳态时,换能器工作在DPLL锁定频率上;动态时,逐步修改匹配电抗大小,搜索输出电流的最大值,再结合DPLL锁定该频率。配合PS-PWM可实现功率连续可调。该超声波换能系统能够有效的跟随最大电流输出频率,即使频率发生漂移系统仍能保持工作在最佳状态,具有实际应用价值。

    标签: 动态匹配换能器 超声波电源

    上传时间: 2022-06-18

    上传用户:

  • 中大功率IGBT驱动及串并联特性应用研究

    本文在分析了中大功率IGBT特性、工作原理及其驱动电路原理和要求的基础上,对EXB841,M57962AL,2SD315A等几种驱动电路的工作特性进行了比较。并针对用于轻合金表面防护处理的特种脉冲电源主功率开关器件驱动电路运行中存在的问题对驱动电路提出了功能改进和扩展方案,进行了实验调试,并成功地应用于不同功率容量1GBT模块的驱动,运行情况良好,提高了电源的可靠性。针对电源设备的进一步功率扩容要求,采用IGBT模块串、并联运行方案。对并联模块的均流、同步触发、散热、布局、布线等问题进行了详细的分析和讨论,同时也讨论了串联模块的均压、驱动等问题,并用仿真电路对串并联模块的工作特性进行了仿真分析。最后将IGBT串并联方案成功地应用于表面处理特种电源中,实际运行表明1GBT模块的串并联扩容是可行的。关键i:IGBT,驱,串联,并联功率开关器件在电力电子设备中占据核心的位置,它的可靠工作是整个装置正常运行的基本条件。[1)在主电路拓扑设计和功率开关器件选取合理的前提下,如何可靠地驱动和保护主开关器件显得十分关键。功率开关器件的驱动电路是主电路与控制电路之间的接口,是电力电子装置的重要部分,对整个设备的性能有很大的影响,其作用是将控制回路输出的PWM脉冲放大到足以驱动功率开关器件。简而言之,驱动电路的基本任务就是将控制电路传来的信号,转换为加在器件控制端和公共端之间的可以使其导通和关断的信号。同样的器件,采用不同的驱动电路将得到不同的开关特性。采用性能良好的驱动电路可以使功率开关器件工作在比较理想的开关状态,同时缩短开关时间,减小开关损耗,对装置的运行效率、可靠性和安全性都有重要的意义。因此驱动电路的优劣直接影响主电路的性能,因此驱动电路的合理化设计显得越来越重要。

    标签: igbt

    上传时间: 2022-06-19

    上传用户:

  • 微弱信号检测中的屏蔽和接地技术

    引言在微弱信号检测中,由于有用信号极其微弱,其量级通常低于1v,被强大的噪声所淹没,因此需设计低噪声放大器,在设计低噪声放大器时采用合理的屏蔽和接地技术,可以最大限度地降低外部的干扰、耦合等噪声,所以,正确掌握屏蔽和接地技术,对于设计优质的低噪声放大器有很重要的意义.屏蔽就是将放大器装在屏蔽罩内,屏蔽罩上带有一定的电位,以阻止不平衡源阻抗中所流过的电流,从而消除输入端的噪声电压,尤其是共模噪声的影响,接地则可以消除各电路回路流过地电阻所产生的噪声,避免地回路中噪声的耦合.1接地技术一个测量系统,总是由若干部件组成,各部件若电位不统一,会引起互相干扰。接地可以统一各部件的基本电位,这是接地的基本目标之一.正确的接地可以克服干扰的影响,但不得当的接地,甚至会加大干扰的影响,所以需研究接地方法。常见的接地方法有:单点串联接地,单点并联接地,多点接地,浮点接地.

    标签: 微弱信号检测 屏蔽 接地

    上传时间: 2022-06-19

    上传用户:

  • 同步整流开关电源的应用设计

    开关稳压电源(以下简称开关电源)问世后,在很多领域逐步取代了线性稳压电源和晶闸管相控电源。早期出现的是串联型开关电源,其主电路拓扑与线性电源相仿,但功率晶体管工作于开关状态,随着脉宽调制(PWM)技术的发展,PWM开关电源问世,它的特点是用20KHz的载波进行脉冲宽度调制,电源的效率可达65%-70%,而线性电源的效率只有30%-40%。因此,用工作频率为20 kHz的PWM开关电源替代线性电源,可大幅度节约能源,从而引起了人们的广泛关注,在电源技术发展史上被誉为20kHz革命。随着超大规模集成芯片尺寸的不断减小,电源的尺寸与微处理器相比要大得多;而航天、潜艇、军用开关电源以及用电池的便携式电子设备(如手提计算机、移动电话等)更需要小型化、轻量化的电源,因此,对开关电源提出了小型轻量要求,包括磁性元件和电容的体积重量也要小。此外,还要求开关电源效率要更高,性能更好,可靠性更高等,这一切高新要求便促进了开关电源的不断发展和进步。

    标签: 整流 开关电源

    上传时间: 2022-06-20

    上传用户:

  • 射频连接器设计和测试技术研究

    为满足信息技术发展的需要,在信息传输中起连接作用的关键元件-射频同轴连接器呈现向小型化、高频率、大功率和高可靠性发展的趋势,特别是通信基站用射频连接器,在电压驻波比、射频泄漏、功率容量等方面还有较高的要求。本课题首先就射频连接器设计中的关键理论和技术进行了分析和论证,重点就传输线方程及其解,传输线的工作状态做出了阐述。目前国内对射频连接器的s参数仿真技术研究较少,有鉴于此论文对射频连接器的Ansoft HFSS仿真进行了研究,诸如电K度,反射损失,插入相位及如何通过评估TDR降低s,,不连续电容及电感的补偿等。由于SMA连按器使用范围广,其结构具有一定的通用参考价值,论文在上述仿真研究的基础上,计算和设计了标准尺寸的SMA射频连接器中心导体常用的倒扣和滚花补偿尺寸,使回损提高了10-15B,对于SMA系列连接器的设计,具有较好的实际参考价值。在Ansoft HFSS中,不仅对s参数仿真进行了研究。还采用专门用于功率仿真的模块Ephysics,研究了不同的负载和散热条件,仿真射频连接器的温度分布,找出系统耐热薄弱点以便分析改进。

    标签: 射频连接器

    上传时间: 2022-06-20

    上传用户:

  • 几种用于IGBT驱动的集成芯片

    在一般较低性能的三相电压源逆变器中, 各种与电流相关的性能控制, 通过检测直流母线上流入逆变桥的直流电流即可,如变频器中的自动转矩补偿、转差率补偿等。同时, 这一检测结果也可以用来完成对逆变单元中IGBT 实现过流保护等功能。因此在这种逆变器中, 对IGBT 驱动电路的要求相对比较简单, 成本也比较低。这种类型的驱动芯片主要有东芝公司生产的TLP250,夏普公司生产的PC923等等。这里主要针对TLP250 做一介绍。TLP250 包含一个GaAlAs 光发射二极管和一个集成光探测器, 8脚双列封装结构。适合于IGBT 或电力MOSFET 栅极驱动电路。图2为TLP250 的内部结构简图, 表1 给出了其工作时的真值表。TLP250 的典型特征如下:1) 输入阈值电流( IF) : 5 mA( 最大) ;2) 电源电流( ICC) : 11 mA( 最大) ;3) 电源电压( VCC) : 10~ 35 V;4) 输出电流( IO) : ± 0.5 A( 最小) ;5) 开关时间( tPLH /tPHL ) : 0.5 μ( s 最 大 ) ;6) 隔离电压: 2500 Vpms(最小)。表2 给出了TLP250 的开关特性,表3 给出了TLP250 的推荐工作条件。注: 使 用 TLP250 时 应 在 管 脚 8和 5 间 连 接 一 个 0.1 μ的 F 陶 瓷 电 容 来稳定高增益线性放大器的工作, 提供的旁路作用失效会损坏开关性能, 电容和光耦之间的引线长度不应超过1 cm。图3 和图4 给出了TLP250 的两种典型的应用电路。

    标签: igbt

    上传时间: 2022-06-20

    上传用户:

  • 《射频通信电路设计》学习笔记

    《射频通信电路设计》学习笔记(一)1.1射频概念1864-1873年,英国物理学家麦克斯书通过电磁学的研究,提出了著名的Maxwell方程组,并在理论上预言了电磁波的存在。1887-1891年,德国物理学家赫兹通过电磁学实验首次证实了电磁波的存在901年,马可尼利用电磁波实现了横跨大西洋的无线通f1.2射频通信电路应用简介在电子通信系统中,只有使用更高的载波频率,才能获得更大的带宽。按照10%的带宽计算,有线电视系统中使用100MHz的载波可以获得10MHz的带宽1.3射频电路设计的特点1.3.1分布参数集总参数元件:指一个独立的局域性元件,能够在一定的频率范围内提供特定的电路性能。在低频电路设计中,可以把元件看作集总参数元件,认为元件的特性仅由二传手自身决定,元件的电磁场部集中在元件内部。如电容、电阻、电感等;一个电容的容抗是由电容自身的特性决定不会受周围元件的影响,如果把其他元件靠近这个电容器,其容抗不会随之产业化。分布参数元件:指一个元件的特性延伸扩展到一定的空间范围内,不再局限于元件自身。由于分布参数元件的电磁场分布在附近空间中,其特性要受周围环境的影响。同一个元件,在低频电路设计中可以看作是集总参数元件,但是在射频电路设计中可能需要作为分布参数元件进行处理。例如,一定长度的一段传输线,在低频电路中可以看作集总参数元件;在射频电路中,就必须看作分布参数元件。分布电容(Cp):指在元件自身封装、元件之间、元件到接地平面和线路板布线间形成非期t电容。分布电容与元件眯并联关系。分布电感(LD):指元件引脚、连线、线路板布线等形成的非期望电感。分布电感通常与元件为串联关系。

    标签: 射频通信 电路设计

    上传时间: 2022-06-21

    上传用户:

  • SC7A20 SC7A21三轴传感器设计指导

    本文提供SC7A20 SC7A21三轴传感器设计指导,本司可提供FAE设计指导。SC7A20是一款高精度数字三轴加速度传感器芯片,内置功能更丰富,功耗更低,体积更小,测量更精确。(±2G、±4G、±8G和±16G四种可调整的全量程测量范围)芯片通过I2C/SPI接口与MCU通信,加速度测量数据以中断方式或查询方式获取。INT1和INT2中断管脚提供多种内部自动检测的中断信号,适应多种运动检测场合,中断源包括6D/4D方向检测中断信号、自由落体检测中断信号、睡眠和唤醒检测中断信号、单击和双击检测中断信号。芯片内置高精度校准模块,对传感器的失调误差和增益误差进行精确补偿。±2G、±4G、±8G和±16G四种可调整的全量程测量范围,灵活测量外部加速度,输出数据率1HZ和400HZ间可选。芯片内置自测试功能允许客户系统测试时检测系统功能,省去复杂的转台测试。芯片内置产品倾斜校准功能,对贴片和板卡安装导致的倾斜进行补偿,不占系统资源,系统文件升级不影响传感器参数。

    标签: 三轴传感器

    上传时间: 2022-06-21

    上传用户:

  • 基于STM32的20KW光伏离网逆变器的设计及MPPT技术的研究

    本文围绕光伏离网发电系统的高效率发电技术和逆变控制技术进行了研究,主要内容如下:(1)研究了单相全桥光伏离网逆变器主电路拓扑结构,详细分析了全桥逆变电路的工作原理。研究了面积中心等效SPWM控制算法及电压电流双闭环PI控制算法,在此基础上实现逆变器的稳压控制。(2)重点研究了光伏阵列的输出特性、最大功率点跟踪(MPPT)控制算法和蓄电池充电特性。在对比分析几种常见MPPT控制算法的基础上,提出了一种改进型变步长扰动观察的MPPT控制方法,同时介绍了几种实现MPPT算法的常用DCIDC变换电路,对Boost变换电路的原理进行了分析,并基于Boost电路建立了改进型变步长扰动观察法MPPT控制系统的Matlab/Simulink仿真模型,仿真结果表明改进型变步长扰动观察的MPPT算法能有效地跟踪太阳能光伏系统的最大功率点,提高了系统动态和稳态性能;设计了带MPPT和恒压充电功能的光伏充电控制器,有效地提高了光伏阵列的利用率并实现了蓄电池充电控制的优化。(3)给出了20KW光伏离网逆变器的主电路元件参数及部分硬件电路的原理图设计。(4)给出了详细的软件控制系统设计方案和各功能子模块的软件流程图.重点阐述了带死区补偿的DSPWM控制信号、稳压控制及信号检测的软件实现方法。

    标签: stm32 光伏逆变器 mppt

    上传时间: 2022-06-21

    上传用户:

  • 基于IGBT的150KHZ大功率感应加热电源的研究

    本文以感应加热电源为研究对象,阐述了感应加热电源的基本原理及其发展趋势。对感应加热电源常用的两种拓扑结构-电流型逆变器和电压型逆变器做了比较分析,并分析了感应加热电源的各种调功方式。在对比几种功率调节方式的基础上,得出在整流侧调功有利于高频感应加热电源频率和功率的提高的结论,选择了不控整流加软斩波器调功的感应加热电源作为研究对象,针对传统硬斩波调功式感应加热电源功率损耗大的缺点,采用软斩波调功方式,设计了一种零电流开关准诺振变换器ZCS-QRCs(Zero-current-switching-Quasi-resonant)倍频式串联 振高频感应加热电源。介绍了该软斩波调功器的组成结构及其工作原理,通过仿真和实验的方法研究了该软斩波器的性能,从而得出该软斩波器非常适合大功率高频感应加热电源应用场合的结论。同时设计了功率闭环控制系统和PI功率调节器,将感应加热电源的功率控制问题转化为Buck斩波器的电压控制问题。针对目前IGBT器件频率较低的实际情况,本文提出了一种新的逆变拓扑-通过IGBT的并联来实现倍频,从而在保证感应加热电源大功率的前提下提高了其工作频率,并在分析其工作原理的基础上进行了仿真,验证了理论分析的正确性,达到了预期的效果。另外,本文还设计了数字锁相环(DPLL),使逆变器始终保持在功率因数近似为1的状态下工作,实现电源的高效运行。最后,分析并设计了1GBT的缓冲吸收电路。本文第五章设计了一台150kHz,10KW的倍频式感应加热电源实验样机,其中斩波器频率为20kHz,逆变器工作频率为150kHz(每个IGBT工作频率为75kHz),控制孩心采用TI公司的TMS320F2812 DSP控制芯片,简化了系统结构。实验结果表明,该倍频式感应加热电源实现了斩波器和逆变器功率器件的软开关,有效的减小了开关损耗,并实现了数字化,提高了整机效率。文章给出了整机的结构设计,直流斩波部分控制框图,逆变控制框图,驱动电路的设计和保护电路的设计。同时,给出了关键电路的仿真和实验波形。

    标签: igbt 电源

    上传时间: 2022-06-22

    上传用户: