剖析Intel IA32 架构下C 语言及CPU 浮点数机制 Version 0.01 哈尔滨工业大学 谢煜波 (email: xieyubo@126.com 网址:http://purec.binghua.com) (QQ:13916830 哈工大紫丁香BBSID:iamxiaohan) 前言 这两天翻看一本C 语言书的时候,发现上面有一段这样写到 例:将同一实型数分别赋值给单精度实型和双精度实型,然后打印输出。 #include <stdio.h> main() { float a double b a = 123456.789e4 b = 123456.789e4 printf(“%f\n%f\n”,a,b) } 运行结果如下:
标签: Version xieyubo Intel email
上传时间: 2013-12-25
上传用户:徐孺
三相步进电机的三相六拍工作方式,正转的绕组通电顺序:A、AB、B、BC、C、CA、A,反转的通电顺序:A、AC、C、CB、B、BA、B、A。 由于步进电机转子有一定的惯性以及所带负载的惯性,故步进电机的工作过程中不能及时的启动和停止,在启动时应慢慢的加速到预定速度,在停止前应逐渐减速到停止,否则,将产生失步现象。 步进电机的控制问题可总结为两点: 1、产生工作方式需要的时序脉冲; 2、控制步进电机的速度,使它始终遵循加速、匀速、减速的规律工作。
上传时间: 2015-12-01
上传用户:685
问题描述 序列Z=<B,C,D,B>是序列X=<A,B,C,B,D,A,B>的子序列,相应的递增下标序列为<2,3,5,7>。 一般地,给定一个序列X=<x1,x2,…,xm>,则另一个序列Z=<z1,z2,…,zk>是X的子序列,是指存在一个严格递增的下标序列〈i1,i2,…,ik〉使得对于所有j=1,2,…,k使Z中第j个元素zj与X中第ij个元素相同。 给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。 你的任务是:给定2个序列X、Y,求X和Y的最长公共子序列Z。
上传时间: 2014-01-25
上传用户:netwolf
1.推动教育学发展的内在动力是( D)的发展。A.教育规律 B.教育价值 C.教育现象 D.教育问题 2.提出“泛智”教育思想,探讨“把一切事物教给一切人类的全部艺术”的教育家是( B)A.培根 B.夸美纽斯 C.赫尔巴特 D.赞可夫
上传时间: 2017-01-06
上传用户:1427796291
pcf project dds sdfsd sdcsc sdcsc sdxcs gh fgb dfv fdgbvfg b fg fb fgbv gbfbf s bgtb fgbfv b fbvf v fbg b v fgg ffg fggfv.
标签: sdcsc fdgbvfg project fgbfv
上传时间: 2014-12-19
上传用户:xwd2010
/****************temic*********t5557***********************************/ #include <at892051.h> #include <string.h> #include <intrins.h> #include <stdio.h> #define uchar unsigned char #define uint unsigned int #define ulong unsigned long //STC12C2051AD的SFR定义 sfr WDT_CONTR = 0xe1;//stc2051的看门狗?????? /**********全局常量************/ //写卡的命令 #define write_command0 0//写密码 #define write_command1 1//写配置字 #define write_command2 2//密码写数据 #define write_command3 3//唤醒 #define write_command4 4//停止命令 #define TRUE 1 #define FALSE 0 #define OK 0 #define ERROR 255 //读卡的时间参数us #define ts_min 250//270*11.0592/12=249//取近似的整数 #define ts_max 304//330*11.0592/12=304 #define t1_min 73//90*11.0592/12=83:-10调整 #define t1_max 156//180*11.0592/12=166 #define t2_min 184//210*11.0592/12=194 #define t2_max 267//300*11.0592/12=276 //***********不采用中断处理:采用查询的方法读卡时关所有中断****************/ sbit p_U2270B_Standby = P3^5;//p_U2270B_Standby PIN=13 sbit p_U2270B_CFE = P3^3;//p_U2270B_CFE PIN=6 sbit p_U2270B_OutPut = P3^7;//p_U2270B_OutPut PIN=2 sbit wtd_sck = P1^7;//SPI总线 sbit wtd_si = P1^3; sbit wtd_so = P1^2; sbit iic_data = P1^2;//lcd IIC sbit iic_clk = P1^7; sbit led_light = P1^6;//测试绿灯 sbit led_light1 = P1^5;//测试红灯 sbit led_light_ok = P1^1;//读卡成功标志 sbit fengmingqi = P1^5; /***********全局变量************************************/ uchar data Nkey_a[4] = {0xA0, 0xA1, 0xA2, 0xA3};//初始密码 //uchar idata card_snr[4]; //配置字 uchar data bankdata[28] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6,7}; //存储卡上用户数据(1-7)7*4=28 uchar data cominceptbuff[6] = {1,2,3,4,5,6};//串口接收数组ram uchar command; //第一个命令 uchar command1;// //uint temp; uchar j,i; uchar myaddr = 8; //uchar ywqz_count,time_count; //ywqz jishu: uchar bdata DATA; sbit BIT0 = DATA^0; sbit BIT1 = DATA^1; sbit BIT2 = DATA^2; sbit BIT3 = DATA^3; sbit BIT4 = DATA^4; sbit BIT5 = DATA^5; sbit BIT6 = DATA^6; sbit BIT7 = DATA^7; uchar bdata DATA1; sbit BIT10 = DATA1^0; sbit BIT11 = DATA1^1; sbit BIT12 = DATA1^2; sbit BIT13 = DATA1^3; sbit BIT14 = DATA1^4; sbit BIT15 = DATA1^5; sbit BIT16 = DATA1^6; sbit BIT17 = DATA1^7; bit i_CurrentLevel;//i_CurrentLevel BIT 00H(Saves current level of OutPut pin of U2270B) bit timer1_end; bit read_ok = 0; //缓存定时值,因用同一个定时器 union HLint { uint W; struct { uchar H;uchar L; } B; };//union HLint idata a union HLint data a; //缓存定时值,因用同一个定时器 union HLint0 { uint W; struct { uchar H; uchar L; } B; };//union HLint idata a union HLint0 data b; /**********************函数原型*****************/ //读写操作 void f_readcard(void);//全部读出1~7 AOR唤醒 void f_writecard(uchar x);//根据命令写不同的内容和操作 void f_clearpassword(void);//清除密码 void f_changepassword(void);//修改密码 //功能子函数 void write_password(uchar data *data p);//写初始密码或数据 void write_block(uchar x,uchar data *data p);//不能用通用指针 void write_bit(bit x);//写位 /*子函数区*****************************************************/ void delay_2(uint x) //延时,时间x*10us@12mhz,最小20us@12mhz { x--; x--; while(x) { _nop_(); _nop_(); x--; } _nop_();//WDT_CONTR=0X3C;不能频繁的复位 _nop_(); } ///////////////////////////////////////////////////////////////////// void initial(void) { SCON = 0x50; //串口方式1,允许接收 //SCON =0x50; //01010000B:10位异步收发,波特率可变,SM2=0不用接收到有效停止位才RI=1, //REN=1允许接收 TMOD = 0x21; //定时器1 定时方式2(8位),定时器0 定时方式1(16位) TCON = 0x40; //设定时器1 允许开始计时(IT1=1) TH1 = 0xfD; //FB 18.432MHz 9600 波特率 TL1 = 0xfD; //fd 11.0592 9600 IE = 0X90; //EA=ES=1 TR1 = 1; //启动定时器 WDT_CONTR = 0x3c;//使能看门狗 p_U2270B_Standby = 0;//单电源 PCON = 0x00; IP = 0x10;//uart you xian XXXPS PT1 PX1 PT0 PX0 led_light1 = 1; led_light = 0; p_U2270B_OutPut = 1; } /************************************************/ void f_readcard()//读卡 { EA = 0;//全关,防止影响跳变的定时器计时 WDT_CONTR = 0X3C;//喂狗 p_U2270B_CFE = 1;// delay_2(232); //>2.5ms /* // aor 用唤醒功能来防碰撞 p_U2270B_CFE = 0; delay_2(18);//start gap>150us write_bit(1);//10=操作码读0页 write_bit(0); write_password(&bankdata[24]);//密码block7 p_U2270B_CFE =1 ;// delay_2(516);//编程及确认时间5.6ms */ WDT_CONTR = 0X3C;//喂狗 led_light = 0; b.W = 0; while(!(read_ok == 1)) { //while(p_U2270B_OutPut);//等一个稳定的低电平?超时判断? while(!p_U2270B_OutPut);//等待上升沿的到来同步信号检测1 TR0 = 1; //deng xia jiang while(p_U2270B_OutPut);//等待下降沿 TR0 = 0; a.B.H = TH0; a.B.L = TL0; TH0 = TL0 = 0; TR0 = 1;//定时器晚启动10个周期 //同步头 if((324 < a.W) && (a.W < 353)) ;//检测同步信号1 else { TR0 = 0; TH0 = TL0 = 0; goto read_error; } //等待上升沿 while(!p_U2270B_OutPut); TR0 = 0; a.B.H = TH0; a.B.L = TL0; TH0 = TL0 = 0; TR0 = 1;//b.N1<<=8; if(a.B.L < 195);//0.5p else { TR0 = 0; TH0 = TL0 = 0; goto read_error; } //读0~7块的数据 for(j = 0;j < 28;j++) { //uchar i; for(i = 0;i < 16;i++)//8个位 { //等待下降沿的到来 while(p_U2270B_OutPut); TR0 = 0; a.B.H = TH0; a.B.L = TL0; TH0 = TL0 = 0; TR0 = 1; if(t2_max < a.W/*)&&(a.W < t2_max)*/)//1P { b.W >>= 2;//先左移再赋值 b.B.L += 0xc0; i++; } else if(t1_min < a.B.L/*)&&(a.B.L < t1_max)*/)//0.5p { b.W >>= 1; b.B.L += 0x80; } else { TR0 = 0; TH0 = TL0 = 0; goto read_error; } i++; while(!p_U2270B_OutPut);//上升 TR0 = 0; a.B.H = TH0; a.B.L = TL0; TH0 = TL0 = 0; TR0 = 1; if(t2_min < a.W/*)&&(a.W < t2_max)*/)//1P { b.W >>= 2; i++; } else if(t1_min < a.B.L/*a.W)&&(a.B.L < t1_max)*/)//0.5P //else if(!(a.W==0)) { b.W >>= 1; //temp+=0x00; //led_light1=0;led_light=1;delay_2(40000); } else { TR0 = 0; TH0 = TL0 = 0; goto read_error; } i++; } //取出奇位 DATA = b.B.L; BIT13 = BIT7; BIT12 = BIT5; BIT11 = BIT3; BIT10 = BIT1; DATA = b.B.H; BIT17 = BIT7; BIT16 = BIT5; BIT15 = BIT3; BIT14 = BIT1; bankdata[j] = DATA1; } read_ok = 1;//读卡完成了 read_error: _nop_(); } } /***************************************************/ void f_writecard(uchar x)//写卡 { p_U2270B_CFE = 1; delay_2(232); //>2.5ms //psw=0 standard write if (x == write_command0)//写密码:初始化密码 { uchar i; uchar data *data p; p = cominceptbuff; p_U2270B_CFE = 0; delay_2(31);//start gap>330us write_bit(1);//写操作码1:10 write_bit(0);//写操作码0 write_bit(0);//写锁定位0 for(i = 0;i < 35;i++) { write_bit(1);//写数据位1 } p_U2270B_CFE = 1; led_light1 = 0; led_light = 1; delay_2(40000);//测试使用 //write_block(cominceptbuff[4],p); p_U2270B_CFE = 1; bankdata[20] = cominceptbuff[0];//密码存入 bankdata[21] = cominceptbuff[1]; bankdata[22] = cominceptbuff[2]; bankdata[23] = cominceptbuff[3]; } else if (x == write_command1)//配置卡参数:初始化 { uchar data *data p; p = cominceptbuff; write_bit(1);//写操作码1:10 write_bit(0);//写操作码0 write_bit(0);//写锁定位0 write_block(cominceptbuff[4],p); p_U2270B_CFE= 1; } //psw=1 pssword mode else if(x == write_command2) //密码写数据 { uchar data*data p; p = &bankdata[24]; write_bit(1);//写操作码1:10 write_bit(0);//写操作码0 write_password(p);//发口令 write_bit(0);//写锁定位0 p = cominceptbuff; write_block(cominceptbuff[4],p);//写数据 } else if(x == write_command3)//aor //唤醒 { //cominceptbuff[1]操作码10 X xxxxxB uchar data *data p; p = cominceptbuff; write_bit(1);//10 write_bit(0); write_password(p);//密码 p_U2270B_CFE = 1;//此时数据不停的循环传出 } else //停止操作码 { write_bit(1);//11 write_bit(1); p_U2270B_CFE = 1; } p_U2270B_CFE = 1; delay_2(560);//5.6ms } /************************************/ void f_clearpassword()//清除密码 { uchar data *data p; uchar i,x; p = &bankdata[24];//原密码 p_U2270B_CFE = 0; delay_2(18);//start gap>150us //操作码10:10xxxxxxB write_bit(1); write_bit(0); for(x = 0;x < 4;x++)//发原密码 { DATA = *(p++); for(i = 0;i < 8;i++) { write_bit(BIT0); DATA >>= 1; } } write_bit(0);//锁定位0:0 p = &cominceptbuff[0]; write_block(0x00,p);//写新配置参数:pwd=0 //密码无效:即清除密码 DATA = 0x00;//停止操作码00000000B for(i = 0;i < 2;i++) { write_bit(BIT7); DATA <<= 1; } p_U2270B_CFE = 1; delay_2(560);//5.6ms } /*********************************/ void f_changepassword()//修改密码 { uchar data *data p; uchar i,x,addr; addr = 0x07;//block7 p = &Nkey_a[0];//原密码 DATA = 0x80;//操作码10:10xxxxxxB for(i = 0;i < 2;i++) { write_bit(BIT7); DATA <<= 1; } for(x = 0;x < 4;x++)//发原密码 { DATA = *(p++); for(i = 0;i < 8;i++) { write_bit(BIT7); DATA >>= 1; } } write_bit(0);//锁定位0:0 p = &cominceptbuff[0]; write_block(0x07,p);//写新密码 p_U2270B_CFE = 1; bankdata[24] = cominceptbuff[0];//密码存入 bankdata[25] = cominceptbuff[1]; bankdata[26] = cominceptbuff[2]; bankdata[27] = cominceptbuff[3]; DATA = 0x00;//停止操作码00000000B for(i = 0;i < 2;i++) { write_bit(BIT7); DATA <<= 1; } p_U2270B_CFE = 1; delay_2(560);//5.6ms } /***************************子函数***********************************/ void write_bit(bit x)//写一位 { if(x) { p_U2270B_CFE = 1; delay_2(32);//448*11.0592/120=42延时448us p_U2270B_CFE = 0; delay_2(28);//280*11.0592/120=26写1 } else { p_U2270B_CFE = 1; delay_2(92);//192*11.0592/120=18 p_U2270B_CFE = 0; delay_2(28);//280*11.0592/120=26写0 } } /*******************写一个block*******************/ void write_block(uchar addr,uchar data *data p) { uchar i,j; for(i = 0;i < 4;i++)//block0数据 { DATA = *(p++); for(j = 0;j < 8;j++) { write_bit(BIT0); DATA >>= 1; } } DATA = addr <<= 5;//0地址 for(i = 0;i < 3;i++) { write_bit(BIT7); DATA <<= 1; } } /*************************************************/ void write_password(uchar data *data p) { uchar i,j; for(i = 0;i < 4;i++)// { DATA = *(p++); for(j = 0;j < 8;j++) { write_bit(BIT0); DATA >>= 1; } } } /*************************************************/ void main() { initial(); TI = RI = 0; ES = 1; EA = 1; delay_2(28); //f_readcard(); while(1) { f_readcard(); //读卡 f_writecard(command1); //写卡 f_clearpassword(); //清除密码 f_changepassword(); //修改密码 } }
标签: 12345
上传时间: 2017-10-20
上传用户:my_lcs
台达变频器说明书,此说明书主要用于台达B型变频器调试参数
标签: 台达变频器
上传时间: 2017-12-31
上传用户:wshaoheng
能源短缺和环境恶化是人类共同面临的挑战。开发新型清洁能源是解决能源短缺和环境恶化的捷径,但是太阳能能源不连续和不稳定的缺点影响其单独使用的效果。为了解决这个问题,可以选择使用多种性质互补的能源联合供电,相互弥补彼此的不足,以达到连续稳定的电能输出。基于双输入直流变换器(Multipk-Input Converter,MC)的光电互补系统相对于风光互补系统而言,在太阳能功率充足时,可以选择将多余的能量进行并网,省去了蕃电池等储能设备,也可大大节约成本,简化控制:而且电网是全天候的,比纯新能源联合系统更加可靠。因此本文将对光电互补系统,研究其拓扑、能量管理和系统参数设计等等在隔离应用的中小功率场合,推挽变换器控制方便,结构简单,应用广泛传统的多输入推挽变换器结构复杂,成本高。通过分析MIC的生成方法,利用脉冲电压源 Pulsating Voltage Source Ce,PⅤSC或者脉冲电流源(Pulsating Curren Source Cell,PCSC)中联或者并联构成简单实用的一族多输入推挽变换器,详细分析了BUCK型PVSC串联构成的双输入推挽变换器的小信号模型和控制方式,为了能够提供交流输出,本文还详细分析了半桥逆变电路的控制方式,并推导出其数学控制模型通过分析系统的工作模式、能量管理策略和不同控制方式对系统的影响,阐叨基于双输入推挽变换器的光电互补系统的工作原理。并对系统软件涉及到的太阳能最大功率跟踪、光电互补控制和逆变控制等算法进行重点研究功率电路参数设计合理与否,直接影响着系统的性能和指标,其中推挽变压器和滤波器的参数设计尤为重要,为此专门给出了硬件参数设计步骤;然后,根据软件算法,设计了控制软件流程图来更清晰的表达软件控制的思想软件参数是影响系统鲁棒性和快速性的另一个关键因素,在硬件设计的基础上,对软件参数进行优化设计,并利用 Simulink软件对设计参数进行仿真分析和修正。然后采用TMS320F2809作为控制芯片,搭建了实验原理样机,并进行了相关验证实验
标签: 推挽变换器
上传时间: 2022-03-16
上传用户:
摘要:新能源汽车的发展有三个路径:改进现有的发动机和整车系统的能效;在现有发动机上使用清洁的非石油燃料;汽车电动化。综合考量这三个路径,汽车电动化是现今的发展所趋。随着全国充电站的不断兴建,充电设备对电网的污染日益严重,消除电网谐波污染,提高功率因数是这些充电设备的必要前提。本文提出的基于三相PFC充电模块,具有电网谐波小、功率因数高等特点,可供充电站备选使用。文章介绍了电力电子领域整流器的发展概况,对多种实现三相整流的控制方法进行了总结,指出了各自的优缺点,特别是对电网的谐波污染。相比之下,电压型空间矢量调制方法能实现四象限运行,特别是在整流状态下,SVPWM控制方法能实现单位功率因数变流,电流波形畸变小。该充电模块很好地解决了新能源电动汽车充电设备对电网的谐波污染、电流波形畸变严重等问题。文章详细推导了 SVPWM控制算法,并在 Matlab/Simulink环境下搭建了三相电压型PWM整流器。并选用飞思卡尔公司的DSP56F803实现三相整流器的数字化,并且成功应用在亚运会充电站充电设备上,验证了该三相PFC充电模块的良好性能。关键词:电动汽车:充电模块;整流器;SVPWM;DSPS6F803;我们国家现在正经历一个新能源产业高速发展的历程,各种新能源产业蒸蒸日上,诸如风力发电、光伏逆变、电动汽车。汽车电动化是一个有着广阔前景的产业,许多汽车巨头已有正式的电动汽车产品问世,并投入使用。从国外情况来看,电动汽车的发展有以下几个特点:第一是混合动力汽车已经开始大规模产业化,第二是插电式混合动力汽车越来越受到重视,第三是纯电动汽车开始进入市场,并有快速增长的趋势。就我们国家而言,国家电网、南方电网、中海油、中石油在电动汽车产业里也起着至关重要的作用,他们对电动汽车产业的发展方向甚至有着决定性的引导。
上传时间: 2022-04-03
上传用户:trh505
产品型号:VK2C23A/B 产品品牌:VINKA/永嘉微/永嘉微电 封装形式:LQFP64/48 裸片:DICE(邦定COB)/COG(邦定玻璃用) 产品年份:新年份 联 系 人:许硕 原厂直销,工程服务,技术支持,价格最具优势!QT394 VK2C23A/B概述: VK2C23A/B是一个点阵式存储映射的LCD驱动器,可支持最大224点(56SEGx4COM)或者最大416点(52SEGx8COM)的LCD屏。单片机可通过I2C接口配置显示参数和读写显示数据,也可通过指令进入省电模式。其高抗干扰,低功耗的特性适用于水电气表以及工控仪表类产品。 特点: ★ 工作电压 2.4-5.5V ★ 内置32 kHz RC振荡器 ★ 偏置电压(BIAS)可配置为1/3、1/4 ★ COM周期(DUTY)可配置为1/4、1/8 ★ 内置显示RAM为56x4位、52x8位 ★ 帧频可配置为80Hz、160Hz ★ 省电模式(通过关显示和关振荡器进入)
标签: VK2C I2C LCD 23 抗干扰 高稳定 接口 控制 驱动IC
上传时间: 2022-04-16
上传用户:2937735731