代码搜索结果

找到约 594 项符合 Regulator 的代码

lqdelay.m

function [C,D0,D1,D2]=lqdelay(A0,A1,B,delay,M,N) %LQDELAY calculates coefficients of the explicit solution % of the linear quadratic regulator problem for systems with delays. % % For the syst

dlqr.m

function [k,s,e] = dlqr(a,b,q,r,nn) %DLQR Linear quadratic regulator design for discrete-time systems. % [K,S,E] = DLQR(A,B,Q,R) calculates the optimal feedback gain % matrix K such that the feed

lqrd.m

function [k,s,e] = lqrd(a,b,q,r,nn,Ts) %LQRD Discrete linear quadratic regulator design from continuous % cost function. % [K,S,E] = LQRD(A,B,Q,R,Ts) calculates the optimal feedback gain

dlqr.m

function [k,s,e] = dlqr(a,b,q,r,nn) %DLQR Linear quadratic regulator design for discrete-time systems. % [K,S,E] = DLQR(A,B,Q,R) calculates the optimal feedback gain % matrix K such that the feed

lqrd.m

function [k,s,e] = lqrd(a,b,q,r,nn,Ts) %LQRD Discrete linear quadratic regulator design from continuous % cost function. % [K,S,E] = LQRD(A,B,Q,R,Ts) calculates the optimal feedback gain

lqry.m

function [k,s,e] = lqry(a,b,c,d,q,r) %LQRY Linear quadratic regulator design with output weighting % for continuous-time systems. % % [K,S,E] = LQRY(A,B,C,D,Q,R) calculates the optimal feedback %

dlqry.m

function [k,s,e] = dlqry(a,b,c,d,q,r) %DLQRY Linear quadratic regulator design with output weighting for % discrete-time systems. % % [K,S,E] = DLQRY(A,B,C,D,Q,R) calculates the optimal feedback

lqry.m

function [k,s,e] = lqry(a,b,c,d,q,r) %LQRY Linear quadratic regulator design with output weighting % for continuous-time systems. % % [K,S,E] = LQRY(A,B,C,D,Q,R) calculates the optimal feedback %

dlqry.m

function [k,s,e] = dlqry(a,b,c,d,q,r) %DLQRY Linear quadratic regulator design with output weighting for % discrete-time systems. % % [K,S,E] = DLQRY(A,B,C,D,Q,R) calculates the optimal feedback

lqry.m

function [k,s,e] = lqry(a,b,c,d,q,r) %LQRY Linear quadratic regulator design with output weighting % for continuous-time systems. % % [K,S,E] = LQRY(A,B,C,D,Q,R) calculates the optimal feedback %