📄 dlqry.m
字号:
function [k,s,e] = dlqry(a,b,c,d,q,r)
%DLQRY Linear quadratic regulator design with output weighting for
% discrete-time systems.
%
% [K,S,E] = DLQRY(A,B,C,D,Q,R) calculates the optimal feedback gain
% matrix K such that the feedback law u[n] = -Kx[n] minimizes the
% cost function
%
% J = Sum {y'Qy + u'Ru}
%
% subject to the constraint equation:
%
% x[n+1] = Ax[n] + Bu[n]
% y[n] = Cx[n] + Du[n]
%
% Also returned is S, the steady-state solution to the associated
% discrete matrix Riccati equation and the closed loop eigenvalues
% E = EIG(A-B*K).
%
% The controller can be formed with DREG.
%
% See also: DLQR, LQRD, and DREG.
% Clay M. Thompson 7-23-90
% Copyright (c) 1986-93 by the MathWorks, Inc.
error(nargchk(6,6,nargin));
qq = c'*q*c;
rr = r + d'*q*d;
nn = c'*q*d;
[k,s,e] = dlqr(a,b,qq,rr,nn);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -