代码搜索结果
找到约 2,425 项符合
Measurement 的代码
learning_the_extended_kalman_filter.m
function [x,P]=ekf(fstate,x,P,hmeas,z,Q,R)
% EKF Extended Kalman Filter for nonlinear dynamic systems
% [x, P] = ekf(f,x,P,h,z,Q,R) returns state estimate, x and state covariance, P
% for nonlin
hfun.m
function [y] = hfun(x,t)
% PURPOSE : Measurement model function.
% INPUTS : - x: The evaluation point in the domain.
% OUTPUTS : - y: The value of the function at x.
% AUTHORS :
% DATE :
if
hfun.m
function [y] = hfun(x,t);
% PURPOSE : Measurement model function.
% INPUTS : - x: The evaluation point in the domain.
% OUTPUTS : - y: The value of the function at x.
% AUTHORS :
% DATE :
if
hfun.m
function [y] = hfun(x,t);
% PURPOSE : Measurement model function.
% INPUTS : - x: The evaluation point in the domain.
% OUTPUTS : - y: The value of the function at x.
% AUTHORS :
% DATE :
if
kalman.m
function [xhat, P] = Kalman(xhat, y, sigmaX, sigmaY, P)
% function [xhat, P] = Kalman(xhat, y, sigmaX, sigmaY, P)
%
% Compute the state estimate.
% INPUTS
% xhat = present state estimate 当
kalmants.m
function [EstAve, MeasAve] = KalmanTS(sigmaX, sigmaY, fOptimal)
% function [EstAve, MeasAve] = KalmanTS(sigmaX, sigmaY, fOptimal)
%
% Monte-Carlo simulation of the truck-trailer system.
% INPUTS
modellinear.m
function [x, y, xhat] = ModelLinear(x, u, xhat, sigmaX, sigmaY)
% function [x, y, xhat] = ModelLinear(x, u, xhat, sigmaX, sigmaY)
%
% Simulate the linear model of the truck-trailer system.
% INP
halfwave.mdl
Model {
Name "halfwave"
Version 6.1
MdlSubVersion 0
GraphicalInterface {
NumRootInports 0
NumRootOutports 0
ParameterArgumentNames ""
ComputedModelVe
boost.mdl
Model {
Name "boost"
Version 6.1
MdlSubVersion 0
GraphicalInterface {
NumRootInports 0
NumRootOutports 0
ParameterArgumentNames ""
ComputedModelVersi
aironet.h
/*
*************************************************************************
* Ralink Tech Inc.
* 5F., No.36, Taiyuan St., Jhubei City,
* Hsinchu County 302,
* Taiwan, R.O.C.
*
* (c) Copyright