代码搜索结果

找到约 2,425 项符合 Measurement 的代码

learning_the_extended_kalman_filter.m

function [x,P]=ekf(fstate,x,P,hmeas,z,Q,R) % EKF Extended Kalman Filter for nonlinear dynamic systems % [x, P] = ekf(f,x,P,h,z,Q,R) returns state estimate, x and state covariance, P % for nonlin

hfun.m

function [y] = hfun(x,t) % PURPOSE : Measurement model function. % INPUTS : - x: The evaluation point in the domain. % OUTPUTS : - y: The value of the function at x. % AUTHORS : % DATE : if

hfun.m

function [y] = hfun(x,t); % PURPOSE : Measurement model function. % INPUTS : - x: The evaluation point in the domain. % OUTPUTS : - y: The value of the function at x. % AUTHORS : % DATE : if

hfun.m

function [y] = hfun(x,t); % PURPOSE : Measurement model function. % INPUTS : - x: The evaluation point in the domain. % OUTPUTS : - y: The value of the function at x. % AUTHORS : % DATE : if

kalman.m

function [xhat, P] = Kalman(xhat, y, sigmaX, sigmaY, P) % function [xhat, P] = Kalman(xhat, y, sigmaX, sigmaY, P) % % Compute the state estimate. % INPUTS % xhat = present state estimate 当

kalmants.m

function [EstAve, MeasAve] = KalmanTS(sigmaX, sigmaY, fOptimal) % function [EstAve, MeasAve] = KalmanTS(sigmaX, sigmaY, fOptimal) % % Monte-Carlo simulation of the truck-trailer system. % INPUTS

modellinear.m

function [x, y, xhat] = ModelLinear(x, u, xhat, sigmaX, sigmaY) % function [x, y, xhat] = ModelLinear(x, u, xhat, sigmaX, sigmaY) % % Simulate the linear model of the truck-trailer system. % INP

halfwave.mdl

Model { Name "halfwave" Version 6.1 MdlSubVersion 0 GraphicalInterface { NumRootInports 0 NumRootOutports 0 ParameterArgumentNames "" ComputedModelVe

boost.mdl

Model { Name "boost" Version 6.1 MdlSubVersion 0 GraphicalInterface { NumRootInports 0 NumRootOutports 0 ParameterArgumentNames "" ComputedModelVersi

aironet.h

/* ************************************************************************* * Ralink Tech Inc. * 5F., No.36, Taiyuan St., Jhubei City, * Hsinchu County 302, * Taiwan, R.O.C. * * (c) Copyright