📄 kalman.m
字号:
function [xhat, P] = Kalman(xhat, y, sigmaX, sigmaY, P)
% function [xhat, P] = Kalman(xhat, y, sigmaX, sigmaY, P)
%
% Compute the state estimate.
% INPUTS
% xhat = present state estimate 当前状态估计
% y = present measurement 当前测量
% sigmaX = standard deviation of process noise 过程噪声的标准差
% sigmaY = standard deviation of measurement noise 测量噪声的标准差
% P = state estimate covariance matrix 状态估计协方差矩阵
% OUTPUTS
% xhat = updated state estimate
% P = updated state estimate covariance
Sw = diag(sigmaX)^2;
Sv = diag(sigmaY)^2;
% Compute the T-S model system matrices and membership degrees.
[A1, A2, B1, B2, h1, h2] = FuzzyModel(xhat);
% Compute the global system matrices.
A = h1 * A1 + h2 * A2;
B = h1 * B1 + h2 * B2;
% Compute the present state estimate.
xhat = xhat + P * inv(P + Sv) * (y - xhat);
% Compute the state estimate covariance.
P = A * (P - P * inv(P + Sv) * P) * A' + Sw;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -