代码搜索结果
找到约 2,916 项符合
Energy 的代码
waterfill.m
function [gn,bn,en,Nuse,btot] = waterfill(H,Ex_bar,Ntot,gap,Noise_var)
% Pn is the channel pulse response
% Ex_bar is the normalized energy
% Ntot is the total number of subchannels
% gap is the
energies.m
function [E,sE]=energies(P,dt,ind,wid);
% ENERGIES calculates energy from time-dependent powerspectrum
%
% [E,sE]=energies(P,dt,ind,wid);
%
% in: P time-dependent power spectrum matri
netamfinal.m
%% Discrete Energy Separation Algorithm 1(DESA-1)for estimation purpose on an AM signal.
%we are considering 512 samples of AM Signal given by the following equation:
k=0.8;
w=pi/128;
q=pi/6;
f
problem_5_4.m
%
% Figure 5.10 reproduction
%
clear;
beta = 50;
Nu = [1:10,20:10:100,200:100:1000]; % Number of Users
M = 32; %Number of PPM positions
Ep = 1; % Energy of pulse
No = 0.05; % Noise va
figure_5_10.m
%
% Figure 5.10 reproduction
%
clear;
beta = 50;
Nu = [1:10,20:10:100,200:100:1000]; % Number of Users
M = 32; %Number of PPM positions
Ep = 1; % Energy of pulse
No = 0.05; % Noise va
green.m
function [ur,uy] = green(freq,vr,group,energy,z,r,offsets,Fx,Fy,Fz,Phi,s_depth,r_depth)
% This function calculates the Green's function of the horizontal and vertical
% Rayleigh wave displacement
eigen.m
%EIGEN Solves the eigenvalue problem in design of the unit-energy
% constrained minimum mean-squared error time domain equalizer.
% [B, W, D, MSE, R, Dv] = EIGEN(RXX, RYY, RXY, Dmin, Dmax, Nb,
eigen.m
%EIGEN Solves the eigenvalue problem in design of the unit-energy
% constrained minimum mean-squared error time domain equalizer.
% [B, W, D, MSE, R, Dv] = EIGEN(RXX, RYY, RXY, Dmin, Dmax, Nb,
motor.java
package emp;
import java.util.Random;
import java.util.Vector;
public class Motor implements Consts{
private class Energy2D{
public double OriginX; //x point of origin
public double
fe6.h
/*
fe.h
fe.c handles purely the inference problem A s + n = z
by free energy minimization
fe6.h differs by having most c-> variables specified in fe_var6