📄 netamfinal.m
字号:
%% Discrete Energy Separation Algorithm 1(DESA-1)for estimation purpose on an AM signal.
%we are considering 512 samples of AM Signal given by the following equation:
k=0.8;
w=pi/128;
q=pi/6;
for n=1:512
x(n)=(1+(k*cos(w*(n))))*(cos(q*(n)));
end
%% implementation of backward difference approximation for the first derivative of x(t):
for n=2:512
y(n)=x(n)-x(n-1);
end
plot(y)
hold on
%% Applying Non Linear Energy Tracking Operator for discrete time case (denoted by 'e')
for n=2:511
ey(n) = (y(n)^2) - ((y(n-1)) * (y(n+1)));
end
plot(ey,'g')
hold on
for n=2:511
ex(n) = (x(n)^2) - ((x(n-1)) * (x(n+1)));
end
plot(ex,'r')
hold on
%% Estimation of intantaneous frequency
for n=2:510
Q(n)=acos(1-(((ey(n)+ey(n+1))/(4*(ex(n))))));
end
plot(Q)
hold on
%% Estimation of amplitude envelop
for n=2:510
j(n)=sqrt(ex(n)/(1-(1-(((ey(n)+ey(n+1))/(4*(ex(n))))))^2));
end
% j()
plot(j,'r')
%% the usual way
for n=1:512
x(n)=(1+(k*cos(w*(n))))*(cos(q*(n)));
end
for n=2:511 % for envelop of signal.
j(n)=(1 + ((k)*(cos(w*n))));
end
plot(j,'o')
% the overlapping of '0'with our result established by NLE shows the
% importance of NLE operators
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -