代码搜索结果
找到约 2,276 项符合
Energy 的代码
amfm_sep.m
% SENERSEP Smooth ENERgy SEParation algorithm, amplitude and frequency tracking
% [am, fm, energy] = amfm_sep(sig,f1,f2), applies the energy operator
% on the sig and its first deriv
historyupdate.m
function Eh = historyupdate(Eh,Ev,t,T)
% Temperature & Energy history update method supplied with SA Tools.
% Copyright (c) 2002, by Richard Frost and Frost Concepts.
% See http://www.frostconcepts
58988
Xref: cantaloupe.srv.cs.cmu.edu sci.energy:15592 sci.image.processing:2661 sci.anthropology:2547 alt.sci.physics.new-theories:3325 sci.skeptic:43191 sci.med:58988 alt.alien.visitors:15481
Newsgroups:
59004
Xref: cantaloupe.srv.cs.cmu.edu sci.energy:15603 sci.image.processing:2666 sci.anthropology:2551 alt.sci.physics.new-theories:3328 sci.skeptic:43212 sci.med:59004 alt.alien.visitors:15487 misc.health.
margtfr.m
function [margt,margf,E]=margtfr(tfr,t,f)
%MARGTFR Marginals and energy of a time-frequency representation.
% [MARGT,MARGF,E]=MARGTFR(TFR,T,F) calculates the time and
% frequency marginals and the en
sigmerge.m
function sig=sigmerge(x1,x2,ratio);
%SIGMERGE Add two signals with given energy ratio in dB.
% SIG=SIGMERGE(X1,X2,RATIO) adds two signals so that a given
% energy ratio expressed in deciBels is satisf
sigmerge.m
function sig=sigmerge(x1,x2,ratio);
%SIGMERGE Add two signals with given energy ratio in dB.
% SIG=SIGMERGE(X1,X2,RATIO) adds two signals so that a given
% energy ratio expressed in deciBels is satisf
margtfr.m
function [margt,margf,E]=margtfr(tfr,t,f)
%MARGTFR Marginals and energy of a time-frequency representation.
% [MARGT,MARGF,E]=MARGTFR(TFR,T,F) calculates the time and
% frequency marginals and the en
cp0201_waveform.m
%
% FUNCTION 2.5 : "cp0201_waveform"
%
% Generates the energy normalized pulse waveform
%
% Special case of the second derivative Gaussian pulse:
% SCHOLTZ'S MONOCYCLE
%
% ********************
poisson.m
function [u, energy] = Poisson(mesh, f, g_D, g_N)
% POISSON solve the 2-D Poisson equation
% -\Delta u = f,
% in the current mesh with boundary conditions
% u = g_D on the Dirich