代码搜索结果

找到约 2,276 项符合 Energy 的代码

amfm_sep.m

% SENERSEP Smooth ENERgy SEParation algorithm, amplitude and frequency tracking % [am, fm, energy] = amfm_sep(sig,f1,f2), applies the energy operator % on the sig and its first deriv

historyupdate.m

function Eh = historyupdate(Eh,Ev,t,T) % Temperature & Energy history update method supplied with SA Tools. % Copyright (c) 2002, by Richard Frost and Frost Concepts. % See http://www.frostconcepts

58988

Xref: cantaloupe.srv.cs.cmu.edu sci.energy:15592 sci.image.processing:2661 sci.anthropology:2547 alt.sci.physics.new-theories:3325 sci.skeptic:43191 sci.med:58988 alt.alien.visitors:15481 Newsgroups:

59004

Xref: cantaloupe.srv.cs.cmu.edu sci.energy:15603 sci.image.processing:2666 sci.anthropology:2551 alt.sci.physics.new-theories:3328 sci.skeptic:43212 sci.med:59004 alt.alien.visitors:15487 misc.health.

margtfr.m

function [margt,margf,E]=margtfr(tfr,t,f) %MARGTFR Marginals and energy of a time-frequency representation. % [MARGT,MARGF,E]=MARGTFR(TFR,T,F) calculates the time and % frequency marginals and the en

sigmerge.m

function sig=sigmerge(x1,x2,ratio); %SIGMERGE Add two signals with given energy ratio in dB. % SIG=SIGMERGE(X1,X2,RATIO) adds two signals so that a given % energy ratio expressed in deciBels is satisf

sigmerge.m

function sig=sigmerge(x1,x2,ratio); %SIGMERGE Add two signals with given energy ratio in dB. % SIG=SIGMERGE(X1,X2,RATIO) adds two signals so that a given % energy ratio expressed in deciBels is satisf

margtfr.m

function [margt,margf,E]=margtfr(tfr,t,f) %MARGTFR Marginals and energy of a time-frequency representation. % [MARGT,MARGF,E]=MARGTFR(TFR,T,F) calculates the time and % frequency marginals and the en

cp0201_waveform.m

% % FUNCTION 2.5 : "cp0201_waveform" % % Generates the energy normalized pulse waveform % % Special case of the second derivative Gaussian pulse: % SCHOLTZ'S MONOCYCLE % % ********************

poisson.m

function [u, energy] = Poisson(mesh, f, g_D, g_N) % POISSON solve the 2-D Poisson equation % -\Delta u = f, % in the current mesh with boundary conditions % u = g_D on the Dirich