代码搜索结果
找到约 582,192 项符合
Cortex-M 的代码
rx_est.m
function [Rx]=Rx_est(X,M)
% [Rx]=Rx_est(X,M)
% RX_EST estimates the autocorrelation of the sequence of random
% variables given in X. Only Rx(0), Rx(1), ... , Rx(M) are computed.
readme.m
% File: ReadMe.txt
%
% Basic Introduction to the Numerical Methods with MATLAB (NMM) Toolbox
%
% The NMM Toolbox is a collection of m-files and data to accompany the text,
% "Numerical Methods w
readme.m
% File: ReadMe.txt
%
% Basic Introduction to the Numerical Methods with MATLAB (NMM) Toolbox
%
% The NMM Toolbox is a collection of m-files and data to accompany the text,
% "Numerical Methods w
fftseq.m
function [M,m,df]=fftseq(m,ts,df)
% [M,m,df]=fftseq(m,ts,df)
% [M,m,df]=fftseq(m,ts)
%FFTSEQ generates M, the FFT of the sequence m.
% The sequence is zero padded to meet th
gpn_ada.m.linux
% Simulate a goal programming network
% Adaptive learning rate strategy has been used
% For details, see
% Van Hulle, M.M. (1991). A Goal Programming Network for Linear
% Programming, Bio. Cybern.,
gpn_ada.m
% Simulate a goal programming network
% Adaptive learning rate strategy has been used
% For details, see
% Van Hulle, M.M. (1991). A Goal Programming Network for Linear
% Programming, Bio. Cybern.,
fftseq.m
function [M,m,df]=fftseq(m,ts,df)
% [M,m,df]=fftseq(m,ts,df)
% [M,m,df]=fftseq(m,ts)
%FFTSEQ Generates M, the FFT of the sequence m.
% The sequence is zero padded to meet the required frequency r
rx_est.m
function [Rx]=Rx_est(X,M)
% [Rx]=Rx_est(X,M)
% RX_EST Estimates the autocorrelation of the sequence of random
% variables given in X. Only Rx(0), Rx(1), ... , Rx(M) are computed.
% Note that
fftseq.m
function [M,m,df]=fftseq(m,ts,df)
% [M,m,df]=fftseq(m,ts,df)
% [M,m,df]=fftseq(m,ts)
%FFTSEQ Generates M, the FFT of the sequence m.
% The sequence is zero padded to meet the required frequency r
rescale.m.svn-base
function y = rescale(x,a,b)
% rescale - rescale data in [a,b]
%
% y = rescale(x,a,b);
%
% Copyright (c) 2004 Gabriel Peyr?
if nargin