📄 gpn_ada.m.linux
字号:
% Simulate a goal programming network% Adaptive learning rate strategy has been used% For details, see% Van Hulle, M.M. (1991). A Goal Programming Network for Linear% Programming, Bio. Cybern., 65, 243--252.%%% Usage: [V,F,E,U,M,conv_flag] = gpn_ada (D, B, G, ep, dt, U_init, m_init)%% V Final Network State% F Constraint Satisfaction (F outputs)% E sum(abs(F))% D,B Constraint arrays% G Gain Vector [nc x 1]% M Learning rate tracefunction [V,F,E,U,M,conv_flag] = gpn_ada (D, B, G, ep, dt, U_init, m_init)[nc ns] = size(D); % # states, # constraintsif (nargin<4) ep = 1000;endif (nargin<5) dt = .001;endif (nargin<6) U_init = zeros(ns,1);endif (nargin<7) m_init = 1;endconv_flag = 0;[V F E U M conv_flag] = gpn_ada_mex (D, B, G, ep, dt, U_init, m_init);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -