代码搜索结果

找到约 33,766 项符合 Algorithm 的代码

1379.cpp

#include #include #include using namespace std; struct dnasort{ char s[55]; int num; }; int cmp(dnasort a,dnasort b){ return a.num

1029.cpp

#include #include using namespace std; short a[999999]; void main() { int n,i; while(cin>>n){ for(i=0;i>a[i]; for(i=0;i

1009.cpp

#include #include #include #include using namespace std; struct mouse{ int j;int f;double d; }mo[1001]; int compare(mouse a,mouse b){ return a.d >

src_gen.m

function src_rly=src_gen(K,L) src_rly=zeros(1,K); %src_rly(2:K)=rand(1,K-1)

pid.h

//***************************************************************************** // // pid.h - Prototypes for the PID feedback control algorithm. // // Copyright (c) 2005,2006 Luminary Micro, Inc. All

pid.c

//***************************************************************************** // // pid.c - PID feedback control algorithm. // // Copyright (c) 2005,2006 Luminary Micro, Inc. All rights reserved. /

readme.txt

---------------------------------------------------------------------- Genetic Algorithm Toolbox for MATLAB, v1.2 ========================================== Thank you for requesting a copy of t

djikstra_init.m

function data = dijkstra_init(W, start_verts, heuristic) % dijkstra_init - initialisation of dijkstra algorithm % % data = dijkstra_init(W, start_verts [,heuristic]); % % 'heuristic' is a structu

djikstra.m

function data = dijkstra(W, start_verts, options, heuristic) % dijkstra - launch the Dijkstra algorithm. % % You can provide special conditions for stop in options : % 'options.stop_at' : sto

rankboost_train.m

function [model,time_taken]=RankBoost_train(data,T,verbose,plot_enable) % RankBoost Training % %Y. Freund, R. Iyer, and R. Schapire, 揂n efficient boosting algorithm for combining preferences,