搜索结果
找到约 139 项符合
presented 的查询结果
按分类筛选
- 全部分类
- 单片机编程 (25)
- 其他书籍 (11)
- 模拟电子 (6)
- 书籍 (6)
- 行业发展研究 (5)
- matlab例程 (5)
- VHDL/FPGA/Verilog (5)
- 人工智能/神经网络 (5)
- 电子书籍 (5)
- 电源技术 (4)
- 无线通信 (4)
- 数值算法/人工智能 (4)
- VC书籍 (4)
- 系统设计方案 (4)
- 可编程逻辑 (3)
- 测试测量 (3)
- 数学计算 (3)
- 文章/文档 (3)
- 教程资料 (2)
- 嵌入式综合 (2)
- 其他 (2)
- Java书籍 (2)
- 单片机开发 (2)
- Internet/网络编程 (2)
- 文件格式 (2)
- GPS编程 (2)
- 接口技术 (1)
- 存储器技术 (1)
- Windows Mobile (1)
- 软件设计/软件工程 (1)
- 生物技术 (1)
- 压缩解压 (1)
- 其他嵌入式/单片机内容 (1)
- 微处理器开发 (1)
- J2ME (1)
- 其他行业 (1)
- 网络 (1)
- 多国语言处理 (1)
- 软件工程 (1)
- 通讯/手机编程 (1)
- Java编程 (1)
- 嵌入式/单片机编程 (1)
- 论文 (1)
- 技术资料 (1)
人工智能/神经网络 n this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional inde
n this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional independence structure of a simple DBN. The derivation and details are presented in A Simple Tutorial on Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. This detailed discussion of the ...
人工智能/神经网络 On-Line MCMC Bayesian Model Selection This demo demonstrates how to use the sequential Monte Carl
On-Line MCMC Bayesian Model Selection
This demo demonstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and deta ...
matlab例程 In this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional ind
In this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional independence structure of a simple DBN. The derivation and details are presented in A Simple Tutorial on Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. This detailed discussion of th ...
数学计算 This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps t
This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, N ...
数学计算 This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hier
This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that n ...
matlab例程 The algorithms are coded in a way that makes it trivial to apply them to other problems. Several gen
The algorithms are coded in a way that makes it trivial to apply them to other problems. Several generic routines for resampling are provided. The derivation and details are presented in: Rudolph van der Merwe, Arnaud Doucet, Nando de Freitas and Eric Wan. The Unscented Particle Filter. Technical re ...
数值算法/人工智能 基于基本遗传算法的函数最优化 SGA.C A Function Optimizer using Simple Genetic Algorithm developed from the Pasca
基于基本遗传算法的函数最优化 SGA.C
A Function Optimizer using Simple Genetic Algorithm developed from the Pascal SGA code presented by David E.Goldberg
其他行业 WMTSA toolbox is an implemenation for MATLAB of the wavelet methods for time series analysis techni
WMTSA toolbox is an implemenation for MATLAB of the wavelet methods for
time series analysis techniques presented in:
Percival, D. B. and A. T. Walden (2000) Wavelet Methods for
Time Series Analysis. Cambridge: Cambridge University Press.
数值算法/人工智能 */ /* A Function Optimizer using Simple Genetic Algorithm */ /* developed from the Pascal SGA code
*/
/* A Function Optimizer using Simple Genetic Algorithm */
/* developed from the Pascal SGA code presented by David E.Goldberg */
/* 同济大学计算机系 王小平 2000年5月
人工智能/神经网络 基于基本遗传算法的函数最优化 A Function Optimizer using Simple Genetic Algorithm developed from the Pascal SGA cod
基于基本遗传算法的函数最优化 A Function Optimizer using Simple Genetic Algorithm developed from the Pascal SGA code presented by David E.Goldber