搜索结果
找到约 30,633 项符合
k均值算法 的查询结果
按分类筛选
数值算法/人工智能 k均值聚类方法的c代码
k均值聚类方法的c代码,并且带有聚类数据,适用于刚刚接触该算法的初学者
数值算法/人工智能 K-MEANS算法 输入:聚类个数k
K-MEANS算法
输入:聚类个数k,以及包含 n个数据对象的数据库。
输出:满足方差最小标准的k个聚类。
处理流程:
(1) 从 n个数据对象任意选择 k 个对象作为初始聚类中心;
(2) 循环(3)到(4)直到每个聚类不再发生变化为止
(3) 根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并 ...
其他 K-MEANS算法: k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各
K-MEANS算法:
k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。
k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k ...
数值算法/人工智能 K-MEANS算法: k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各
K-MEANS算法:
k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。
k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k ...
数学计算 k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象
k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始 ...
人工智能/神经网络 :将K—means算法引入到朴素贝叶斯分类研究中
:将K—means算法引入到朴素贝叶斯分类研究中,提出一种基于K—means的朴素贝叶斯分类算法。首先用K—
me.arks算法对原始数据集中的完整数据子集进行聚类,计算缺失数据子集中的每条记录与 个簇重心之间的相似度,把记
录赋给距离最近的一个簇,并用该簇相应的属性均值来填充记录的缺失值,然后用朴素贝叶斯分类算法对处理 ...
源码 数据挖掘-聚类-K-means算法Java实现
K-Means算法是最古老也是应用最广泛的聚类算法,它使用质心定义原型,质心是一组点的均值,通常该算法用于n维连续空间中的对象。
K-Means算法流程
step1:选择K个点作为初始质心
step2:repeat
               将每个点指派到最近的质心,形成K个簇
  &nb ...
人工智能/神经网络 k-means算法(matlab编写),其中包含测试数据集,可以使用.
k-means算法(matlab编写),其中包含测试数据集,可以使用.
数学计算 该软件是基于C均值算法的聚类软件
该软件是基于C均值算法的聚类软件,能对数值型数据集进行合理的聚类。