搜索结果
找到约 320 项符合
TAr 的查询结果
按分类筛选
- 全部分类
- Linux/Unix编程 (110)
- 网络 (39)
- 嵌入式Linux (27)
- 压缩解压 (13)
- 人工智能/神经网络 (10)
- 其他 (10)
- 嵌入式/单片机编程 (8)
- VHDL/FPGA/Verilog (8)
- 加密解密 (7)
- VIP专区 (7)
- 数学计算 (6)
- 操作系统开发 (5)
- 编译器/解释器 (5)
- 软件设计/软件工程 (5)
- 微处理器开发 (4)
- Java编程 (4)
- matlab例程 (4)
- 多媒体处理 (3)
- USB编程 (3)
- Internet/网络编程 (3)
- 书籍源码 (3)
- Linux/uClinux/Unix编程 (3)
- 电子书籍 (2)
- 单片机编程 (2)
- 驱动编程 (2)
- 文章/文档 (2)
- 中间件编程 (2)
- 磁盘编程 (2)
- 其他数据库 (2)
- CA认证 (2)
- 教程资料 (1)
- 可编程逻辑 (1)
- 源码/资料 (1)
- SCSI/ASPI (1)
- 数值算法/人工智能 (1)
- DSP编程 (1)
- 语音压缩 (1)
- VxWorks (1)
- 文件格式 (1)
- 其他嵌入式/单片机内容 (1)
- 手机WAP编程 (1)
- 传真(Fax)编程 (1)
- Jsp/Servlet (1)
- 其他书籍 (1)
- MySQL数据库 (1)
- 单片机开发 (1)
- 汇编语言 (1)
中间件编程 High-speed Interface to Host EPP Parallel Port * Version: 1.0 * Last updated: 2001.12.20 * Tar
High-speed Interface to Host EPP Parallel Port
* Version: 1.0
* Last updated: 2001.12.20
* Target: All AVR Devices with 12 I/O pins
人工智能/神经网络 n this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional inde
n this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional independence structure of a simple DBN. The derivation and details are presented in A Simple Tutorial on Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. This detailed discussion of the ...
人工智能/神经网络 On-Line MCMC Bayesian Model Selection This demo demonstrates how to use the sequential Monte Carl
On-Line MCMC Bayesian Model Selection
This demo demonstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and deta ...
数学计算 The software implements particle filtering and Rao Blackwellised particle filtering for conditionall
The software implements particle filtering and Rao Blackwellised particle filtering for conditionally Gaussian Models. The RB algorithm can be interpreted as an efficient stochastic mixture of Kalman filters. The software also includes efficient state-of-the-art resampling routines. These are generi ...
matlab例程 In this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional ind
In this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional independence structure of a simple DBN. The derivation and details are presented in A Simple Tutorial on Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. This detailed discussion of th ...
matlab例程 In this demo, I use the EM algorithm with a Rauch-Tung-Striebel smoother and an M step, which I ve r
In this demo, I use the EM algorithm with a Rauch-Tung-Striebel smoother and an M step, which I ve recently derived, to train a two-layer perceptron, so as to classify medical data (kindly provided by Steve Roberts and Will Penny from EE, Imperial College). The data and simulations are described in: ...
matlab例程 sbgcop: Semiparametric Bayesian Gaussian copula estimation This package estimates parameters of a G
sbgcop: Semiparametric Bayesian Gaussian copula estimation
This package estimates parameters of a Gaussian copula, treating the univariate marginal distributions as nuisance parameters as described in Hoff(2007). It also provides a semiparametric imputation procedure for missing multivariate data.
...
压缩解压 WINRAR 是现在最好的压缩工具
WINRAR 是现在最好的压缩工具,界面友好,使用方便,在压缩率和速度方面都有很好的表现。其压缩率比之 WINZIP 之流要高,3.30 增加了病毒扫描等功能。RAR 采用了比 Zip 更先进的压缩算法,是现在压缩率较大、压缩速度较快的格式之一。 主要特点:对 RAR 和 ZIP 的完全支持; 支持 ARJ、CAB、LZH、ACE、TAR、GZ、UUE、BZ2、J ...
数学计算 This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps t
This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, N ...
数学计算 This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hier
This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that n ...