⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ddr.v

📁 DDR and DDR DIMM Controller
💻 V
📖 第 1 页 / 共 4 页
字号:
            end
`endif
        end
    endtask

    // Burst Decode
    task Burst_Decode;
    begin

        // Advance Burst Counter
        if (Burst_counter < burst_length) begin
            Burst_counter = Burst_counter + 1;
        end

        // Burst Type
        if (Mode_reg[3] === 1'b0) begin                         // Sequential Burst
            Cols_temp = Cols_addr + 1;
        end else if (Mode_reg[3] === 1'b1) begin                // Interleaved Burst
            Cols_temp[2] =  Burst_counter[2] ^ Cols_brst[2];
            Cols_temp[1] =  Burst_counter[1] ^ Cols_brst[1];
            Cols_temp[0] =  Burst_counter[0] ^ Cols_brst[0];
        end

        // Burst Length
        if (burst_length === 2) begin
            Cols_addr [0] = Cols_temp [0];
        end else if (burst_length === 4) begin
            Cols_addr [1 : 0] = Cols_temp [1 : 0];
        end else if (burst_length === 8) begin
            Cols_addr [2 : 0] = Cols_temp [2 : 0];
        end else begin
            Cols_addr = Cols_temp;
        end

        // Data Counter
        if (Burst_counter >= burst_length) begin
            Data_in_enable = 1'b0;
            Data_out_enable = 1'b0;
            read_precharge_truncation = 4'h0;        end
        
    end
    endtask

    // Manual Precharge Pipeline
    task Manual_Precharge_Pipeline;
    begin
        // A10 Precharge Pipeline
        A10_precharge[0] = A10_precharge[1];
        A10_precharge[1] = A10_precharge[2];
        A10_precharge[2] = A10_precharge[3];
        A10_precharge[3] = A10_precharge[4];
        A10_precharge[4] = A10_precharge[5];
        A10_precharge[5] = A10_precharge[6];
        A10_precharge[6] = 1'b0;

        // Bank Precharge Pipeline
        Bank_precharge[0] = Bank_precharge[1];
        Bank_precharge[1] = Bank_precharge[2];
        Bank_precharge[2] = Bank_precharge[3];
        Bank_precharge[3] = Bank_precharge[4];
        Bank_precharge[4] = Bank_precharge[5];
        Bank_precharge[5] = Bank_precharge[6];
        Bank_precharge[6] = 2'b0;

        // Command Precharge Pipeline
        Cmnd_precharge[0] = Cmnd_precharge[1];
        Cmnd_precharge[1] = Cmnd_precharge[2];
        Cmnd_precharge[2] = Cmnd_precharge[3];
        Cmnd_precharge[3] = Cmnd_precharge[4];
        Cmnd_precharge[4] = Cmnd_precharge[5];
        Cmnd_precharge[5] = Cmnd_precharge[6];
        Cmnd_precharge[6] = 1'b0;

        // Terminate a Read if same bank or all banks
        if (Cmnd_precharge[0] === 1'b1) begin
            if (Bank_precharge[0] === Bank_addr || A10_precharge[0] === 1'b1) begin
                if (Data_out_enable === 1'b1) begin
                    Data_out_enable = 1'b0;
                    read_precharge_truncation = 4'hF;                end
            end
        end
    end
    endtask

    // Burst Terminate Pipeline
    task Burst_Terminate_Pipeline;
    begin
        // Command Precharge Pipeline
        Cmnd_bst[0] = Cmnd_bst[1];
        Cmnd_bst[1] = Cmnd_bst[2];
        Cmnd_bst[2] = Cmnd_bst[3];
        Cmnd_bst[3] = Cmnd_bst[4];
        Cmnd_bst[4] = Cmnd_bst[5];
        Cmnd_bst[5] = Cmnd_bst[6];
        Cmnd_bst[6] = 1'b0;

        // Terminate a Read regardless of banks
        if (Cmnd_bst[0] === 1'b1 && Data_out_enable === 1'b1) begin
            Data_out_enable = 1'b0;
        end
    end
    endtask

    // Dq and Dqs Drivers
    task Dq_Dqs_Drivers;
    begin
        // read command pipeline
        Read_cmnd [0] = Read_cmnd [1];
        Read_cmnd [1] = Read_cmnd [2];
        Read_cmnd [2] = Read_cmnd [3];
        Read_cmnd [3] = Read_cmnd [4];
        Read_cmnd [4] = Read_cmnd [5];
        Read_cmnd [5] = Read_cmnd [6];
        Read_cmnd [6] = 1'b0;

        // read bank pipeline
        Read_bank [0] = Read_bank [1];
        Read_bank [1] = Read_bank [2];
        Read_bank [2] = Read_bank [3];
        Read_bank [3] = Read_bank [4];
        Read_bank [4] = Read_bank [5];
        Read_bank [5] = Read_bank [6];
        Read_bank [6] = 2'b0;

        // read column pipeline
        Read_cols [0] = Read_cols [1];
        Read_cols [1] = Read_cols [2];
        Read_cols [2] = Read_cols [3];
        Read_cols [3] = Read_cols [4];
        Read_cols [4] = Read_cols [5];
        Read_cols [5] = Read_cols [6];
        Read_cols [6] = 0;

        // Initialize Read command
        if (Read_cmnd [0] === 1'b1) begin
            Data_out_enable = 1'b1;
            Bank_addr = Read_bank [0];
            Cols_addr = Read_cols [0];
            Cols_brst = Cols_addr [2 : 0];
            Burst_counter = 0;

            // Row Address Mux
            case (Bank_addr)
                2'd0    : Rows_addr = B0_row_addr;
                2'd1    : Rows_addr = B1_row_addr;
                2'd2    : Rows_addr = B2_row_addr;
                2'd3    : Rows_addr = B3_row_addr;
                default : $display ("At time %t ERROR: Invalid Bank Address", $time);
            endcase
        end

        // Toggle Dqs during Read command
        if (Data_out_enable === 1'b1) begin
            Dqs_int = 1'b0;
            if (Dqs_out === {DQS_BITS{1'b0}}) begin
                Dqs_out = {DQS_BITS{1'b1}};
            end else if (Dqs_out === {DQS_BITS{1'b1}}) begin
                Dqs_out = {DQS_BITS{1'b0}};
            end else begin
                Dqs_out = {DQS_BITS{1'b0}};
            end
        end else if (Data_out_enable === 1'b0 && Dqs_int === 1'b0) begin
            Dqs_out = {DQS_BITS{1'bz}};
        end

        // Initialize dqs for Read command
        if (Read_cmnd [2] === 1'b1) begin
            if (Data_out_enable === 1'b0) begin
                Dqs_int = 1'b1;
                Dqs_out = {DQS_BITS{1'b0}};
            end
        end

        // Read latch
        if (Data_out_enable === 1'b1) begin
            // output data
            read_mem({Bank_addr, Rows_addr, Cols_addr}, Dq_out);
            if (DEBUG) begin
                $display ("At time %t READ : Bank = %h, Row = %h, Col = %h, Data = %h", $time, Bank_addr, Rows_addr, Cols_addr, Dq_out);
            end
        end else begin
            Dq_out = {DQ_BITS{1'bz}};
        end
    end
    endtask

    // Write FIFO and DM Mask Logic
    task Write_FIFO_DM_Mask_Logic;
    begin
        // Write command pipeline
        Write_cmnd [0] = Write_cmnd [1];
        Write_cmnd [1] = Write_cmnd [2];
        Write_cmnd [2] = Write_cmnd [3];
        Write_cmnd [3] = 1'b0;

        // Write command pipeline
        Write_bank [0] = Write_bank [1];
        Write_bank [1] = Write_bank [2];
        Write_bank [2] = Write_bank [3];
        Write_bank [3] = 2'b0;

        // Write column pipeline
        Write_cols [0] = Write_cols [1];
        Write_cols [1] = Write_cols [2];
        Write_cols [2] = Write_cols [3];
        Write_cols [3] = {COL_BITS{1'b0}};

        // Initialize Write command
        if (Write_cmnd [0] === 1'b1) begin
            Data_in_enable = 1'b1;
            Bank_addr = Write_bank [0];
            Cols_addr = Write_cols [0];
            Cols_brst = Cols_addr [2 : 0];
            Burst_counter = 0;

            // Row address mux
            case (Bank_addr)
                2'd0    : Rows_addr = B0_row_addr;
                2'd1    : Rows_addr = B1_row_addr;
                2'd2    : Rows_addr = B2_row_addr;
                2'd3    : Rows_addr = B3_row_addr;
                default : $display ("At time %t ERROR: Invalid Row Address", $time);
            endcase
        end

        // Write data
        if (Data_in_enable === 1'b1) begin

            // Data Buffer
            read_mem({Bank_addr, Rows_addr, Cols_addr}, Dq_buf);

            // write negedge Dqs on posedge Sys_clk
            if (Sys_clk) begin
                if (!dm_fall[0]) begin
                    Dq_buf [ 7 : 0] = dq_fall [ 7 : 0];
                end
                if (!dm_fall[1]) begin
                    Dq_buf [15 : 8] = dq_fall [15 : 8];
                end
                if (!dm_fall[2]) begin
                    Dq_buf [23 : 16] = dq_fall [23 : 16];
                end
                if (!dm_fall[3]) begin
                    Dq_buf [31 : 24] = dq_fall [31 : 24];
                end
                if (~&dm_fall) begin
                    if (DEBUG) begin
                        $display ("At time %t WRITE: Bank = %h, Row = %h, Col = %h, Data = %h", $time, Bank_addr, Rows_addr, Cols_addr, Dq_buf[DQ_BITS-1:0]);
                    end
                end
            // write posedge Dqs on negedge Sys_clk
            end else begin
                if (!dm_rise[0]) begin
                    Dq_buf [ 7 : 0] = dq_rise [ 7 : 0];
                end
                if (!dm_rise[1]) begin
                    Dq_buf [15 : 8] = dq_rise [15 : 8];
                end
                if (!dm_rise[2]) begin
                    Dq_buf [23 : 16] = dq_rise [23 : 16];
                end
                if (!dm_rise[3]) begin
                    Dq_buf [31 : 24] = dq_rise [31 : 24];
                end
                if (~&dm_rise) begin
                    if (DEBUG) begin
                        $display ("At time %t WRITE: Bank = %h, Row = %h, Col = %h, Data = %h", $time, Bank_addr, Rows_addr, Cols_addr, Dq_buf[DQ_BITS-1:0]);
                    end
                end
            end

            // Write Data
            write_mem({Bank_addr, Rows_addr, Cols_addr}, Dq_buf);

            // tWR start and tWTR check
            if (Sys_clk && &dm_pair === 1'b0)  begin
                case (Bank_addr)
                    2'd0    : WR_chk0 = $time;
                    2'd1    : WR_chk1 = $time;
                    2'd2    : WR_chk2 = $time;
                    2'd3    : WR_chk3 = $time;
                    default : $display ("At time %t ERROR: Invalid Bank Address (tWR)", $time);
                endcase

                // tWTR check
                if (Read_enable === 1'b1) begin
                    $display ("At time %t ERROR: tWTR violation during Read", $time);
                end
            end
        end
    end
    endtask

    // Auto Precharge Calculation
    task Auto_Precharge_Calculation;
    begin
        // Precharge counter
        if (Read_precharge [0] === 1'b1 || Write_precharge [0] === 1'b1) begin
            Count_precharge [0] = Count_precharge [0] + 1;
        end
        if (Read_precharge [1] === 1'b1 || Write_precharge [1] === 1'b1) begin
            Count_precharge [1] = Count_precharge [1] + 1;
        end
        if (Read_precharge [2] === 1'b1 || Write_precharge [2] === 1'b1) begin
            Count_precharge [2] = Count_precharge [2] + 1;
        end
        if (Read_precharge [3] === 1'b1 || Write_precharge [3] === 1'b1) begin
            Count_precharge [3] = Count_precharge [3] + 1;
        end

        // Read with AutoPrecharge Calculation
        //      The device start internal precharge when:
        //          1.  Meet tRAS requirement
        //          2.  BL/2 cycles after command
        if ((Read_precharge[0] === 1'b1) && ($time - RAS_chk0 >= tRAS)) begin
            if (Count_precharge[0] >= burst_length/2) begin
                Pc_b0 = 1'b1;
                Act_b0 = 1'b0;
                RP_chk0 = $time;
                Read_precharge[0] = 1'b0;
            end
        end
        if ((Read_precharge[1] === 1'b1) && ($time - RAS_chk1 >= tRAS)) begin
            if (Count_precharge[1] >= burst_length/2) begin
                Pc_b1 = 1'b1;
                Act_b1 = 1'b0;
                RP_chk1 = $time;
                Read_precharge[1] = 1'b0;
            end
        end
        if ((Read_precharge[2] === 1'b1) && ($time - RAS_chk2 >= tRAS)) begin
            if (Count_precharge[2] >= burst_length/2) begin
                Pc_b2 = 1'b1;
                Act_b2 = 1'b0;
                RP_chk2 = $time;
                Read_precharge[2] = 1'b0;
            end
        end
        if ((Read_precharge[3] === 1'b1) && ($time - RAS_chk3 >= tRAS)) begin
            if (Count_precharge[3] >= burst_length/2) begin
                Pc_b3 = 1'b1;
                Act_b3 = 1'b0;
                RP_chk3 = $time;
                Read_precharge[3] = 1'b0;
            end
        end

        // Write with AutoPrecharge Calculation
        //      The device start internal precharge when:
        //          1.  Meet tRAS requirement
        //          2.  Write Latency PLUS BL/2 cycles PLUS tWR after Write command
        if ((Write_precharge[0] === 1'b1) && ($time - RAS_chk0 >= tRAS)) begin             if ((Count_precharge[0] >= burst_length/2+1) && ($time - WR_chk0 >= tWR)) begin
                Pc_b0 = 1'b1;
                Act_b0 = 1'b0;                RP_chk0 = $time;                Write_precharge[0] = 1'b0;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -