📄 nrf905_temperature.c
字号:
/***********************************************************************************
Project: uRF905 demo program (V2.1)
Filename: uRF905_Sample_Code.c
Prozessor: Mega8 family
Copyrigth: (c) Sensirion AG
***********************************************************************************/
#include<iom8v.h>
#include <math.h>
#include<macros.h>
#include<eeprom.h>
#include<string.h>
#include<stdio.h>
#define CH_NO_FREQ_422_4MHz 0x000 //工作频率422.4MHz(433MHz频段最低频率)
#define CH_NO_FREQ_422_5MHz 0x001 //工作频率422.5MHz
#define CH_NO_FREQ_425_0MHz 0x01a //工作频率425.0MHz
#define CH_NO_FREQ_427_5MHz 0x033 //工作频率427.5MHz
#define CH_NO_FREQ_430_0MHz 0x04c //工作频率430.0MHz
#define CH_NO_FREQ_433_0MHz 0x06a //工作频率433.0MHz(433MHz频段基准频率)
#define CH_NO_FREQ_433_1MHz 0x06b //工作频率433.1MHz
#define CH_NO_FREQ_433_2MHz 0x06c //工作频率433.2MHz
#define CH_NO_FREQ_434_7MHz 0x07b //工作频率434.7MHz
#define CH_NO_FREQ_473_5MHz 0x1ff //工作频率473.5MHz(433MHz频段最高频率)
#define CH_NO_FREQ_844_8MHz 0x000 //工作频率844.8MHz(868MHz频段最低频率)
#define CH_NO_FREQ_862_0MHz 0x056 //工作频率862.0MHz
#define CH_NO_FREQ_868_0MHz 0x074 //工作频率868.0MHz(868MHz频段基准频率)
#define CH_NO_FREQ_868_2MHz 0x075 //工作频率868.2MHz
#define CH_NO_FREQ_868_4MHz 0x076 //工作频率868.4MHz
#define CH_NO_FREQ_869_8MHz 0x07d //工作频率869.8MHz
#define CH_NO_FREQ_895_8MHz 0x0ff //工作频率895.8MHz
#define CH_NO_FREQ_896_0MHz 0x100 //工作频率896.0MHz
#define CH_NO_FREQ_900_0MHz 0x114 //工作频率900.0MHz
#define CH_NO_FREQ_902_2MHz 0x11f //工作频率902.2MHz
#define CH_NO_FREQ_902_4MHz 0x120 //工作频率902.4MHz
#define CH_NO_FREQ_915_0MHz 0x15f //工作频率915.0MHz(915MHz频段基准频率)
#define CH_NO_FREQ_927_8MHz 0x19f //工作频率927.8MHz
#define CH_NO_FREQ_947_0MHz 0x1ff //工作频率947.0MHz(915MHz频段最高频率)
#define CH_NO_FREQ CH_NO_FREQ_430_0MHz //工作频率433.0MHz
#define CH_NO_BYTE CH_NO_FREQ & 0xff //工作频率低8位 Byte0 01101100
#define AUTO_RETRAN 0x20 //重发数据包 Byte1.5 0
#define RX_RED_PWR 0x10 //接收低功耗模式 Byte1.4 0
#define PA_PWR__10dBm 0x00 //输出功率-10dBm Byte1.3~2 00
#define PA_PWR_2dBm 0x04 //输出功率+2dBm Byte1.3~2
#define PA_PWR_6dBm 0x08 //输出功率+6dBm Byte1.3~2
#define PA_PWR_10dBm 0x0c //输出功率+10dBm Byte1.3~2
#define HFREQ_PLL_433MHz 0x00 //工作在433MHz频段 Byte1.1 0
#define HFREQ_PLL_868MHz 0x02 //工作在868MHz频段 Byte1.1
#define HFREQ_PLL_915MHz 0x02 //工作在915MHz频段 Byte1.1
#define CH_NO_BIT8 CH_NO_FREQ >> 8 //工作频率第9位 Byte1.0 0
#define ADDR_1 'G'
#define ADDR_2 'W'
#define ADDR_3 'Z'
#define ADDR_4 'D'
#define CMD_ASKDATA 0x00
#define CMD_RETDATA 0x01
#define CMD_DOWNPARA 0x02
#define CMD_RETPARA 0x03
#define CMD_SETID 0X05
#define CMD_SETID_OK 0X06
#define CMD_READID 0x07
typedef unsigned char BOOLEAN;
typedef unsigned char INT8U;
typedef signed char INT8S;
typedef unsigned int INT16U;
typedef signed int INT16S;
typedef unsigned long INT32U;
typedef signed long INT32S;
#define BIT_H(x) (1<<x)
#define BIT_L(x) (~(1<<x))
#define TX_STATUS (PORTD |= BIT_H(PD2))
#define RX_STATUS (PORTD &= BIT_L(PD2))
#define PWR_UP_H (PORTB |= BIT_H(PB0))
#define PWR_UP_L (PORTB &= BIT_L(PB0))
#define CSN_H (PORTB |= BIT_H(PB2))
#define CSN_L (PORTB &= BIT_L(PB2))
#define MOSI_H (PORTB |= BIT_H(PB3))
#define MOSI_L (PORTB &= BIT_L(PB3))
#define MISO_H (PORTB |= BIT_H(PB4))
#define MISO_L (PORTB &= BIT_L(PB4))
#define SCK_H (PORTB |= BIT_H(PB5))
#define SCK_L (PORTB &= BIT_L(PB5))
#define CD (PIND & BIT_H(PD2))
#define DR (PIND & BIT_H(PD3))
#define AM (PIND & BIT_H(PD4))
#define TX_EN_H (PORTD |= BIT_H(PD5))
#define TX_EN_L (PORTD &= BIT_L(PD5))
#define TRX_CE_H (PORTD |= BIT_H(PD6))
#define TRX_CE_L (PORTD &= BIT_L(PD6))
#define LED_H (PORTD |= BIT_H(PD7))
#define LED_L (PORTD &= BIT_L(PD7))
#define noACK 0
#define ACK 1
#define fosc 7372800
#define baud 115200
#define AD_NUM 30
#define MS_COUNT fosc/1000/17 //延时计数
#define SR_NOP() asm("nop") //空指令
#define ID_L_ADDR 0x1fe
#define ID_H_ADDR 0x1fd
#define LIMIT_START_ARRD 0x1c0
#define num_ADDR 0x1b0
#define RXBUF_LEN 32
#define RXBUF_LEN1 RXBUF_LEN-1
#define SPI_BUF_LEN 16
#define SPI_BUF_LEN1 SPI_BUF_LEN-1
#define BYTE unsigned char
#define WORD unsigned int
static WORD adc_val; //AD结果
WORD adc_mux; //AD通道
static WORD adc_mul; //AD放大倍数,4--1倍,3-10倍,2--100倍,1--1000倍,0--10000倍
static WORD adc_num;
static WORD adc_num1;
static WORD adc_count;
BYTE TxFlag[6];
BYTE Mode; // 运行模式 0 -- 正常,1 -- 测试
BYTE SPI_Received;
BYTE Register[10];
BYTE StepCount=0;
BYTE num = 1;
BYTE data[16];
BYTE startnum;
BYTE no;
WORD limit[8][3];
BYTE alarmno;
static INT8U rxbuf[RXBUF_LEN],LPCData=0xff;
static INT8U rxpt;
static INT8U handlept;
WORD Alarm_flag_prev[8];
BYTE alarm_flag[8];
static BYTE tx_addr[4];
static BYTE tx_buf[RXBUF_LEN];
static BYTE tx_len;
static BYTE lastcmd;
static INT8U spi_rxbuf[SPI_BUF_LEN];
static INT8U spi_rxpt;
static INT8U spi_handlept;
//static INT8U spi_txflag;
#define W_CONFIG 0x00
#define R_CONFIG 0x10
#define W_TX_PAYLOAD 0x20
#define R_TX_PAYLOAD 0x21
#define W_TX_ADDRESS 0x22
#define R_TX_ADDRESS 0x23
#define R_RX_PAYLOAD 0x24
#define CHANNEL_CONFIG 0x8c
#define SPI_CMD_NUM 8
static INT8U ID_L;
static INT8U ID_H;
WORD TCNTData;
WORD SecondCount=0;
WORD Count=0;
BYTE FlashFlag; //灯闪烁标志
BYTE SendDataFlag;
#define SENDTIMER 3 // 每10秒钟发送一次数据
#define NODATALIMIT 300 // 3分钟收不到命令则复位
#define FLASHLIMIT 2 // 每收到一组数据闪烁1次
BYTE temperature_L,temperature_H;
void handle(void);
void InitSPI(void);
void SendGram(BYTE cmd);
/////////////////////////////////////////////////////////////
BYTE EEPROM_read(WORD uiAddress)
{
while(EECR&(1<<EEWE)); //等待写入前一个字节
EEAR=uiAddress; //设置地址寄存器
EECR |= (1<<EERE); //通过设置EERE,开始读EEPROM
return EEDR; //返回数据寄存器
}
/////////////////////////////////////////////////////////////////////////////////
void EEPROM_write( WORD uiAddress, BYTE ucData)
{
while(EECR&(1<<EEWE)); //等待写入前一个字节
EEAR=uiAddress; //设置地址寄存器
EEDR=ucData; //设置数据寄存器
EECR |= (1<<EEMWE); //将EEMWE写入高
EECR |= (1<<EEWE); //通过设置EEWE,开始写EEPROM
}
//
void delay(WORD n)
{
while(--n);
}
//延时n毫秒
void sr_ms(WORD n)
{ //延时n毫秒
WORD i,j;
for(i=0; i<n; i++)
for(j=0; j<MS_COUNT;j++);
}
/////////////////////////////////////////////////////////////
void quarter_ms(WORD n)
{ //延时n毫秒
WORD i,j;
for(i=0; i<n; i++)
for(j=0; j<MS_COUNT/4;j++);
}
/////////////////////////////////////////////////////////////
void half_ms(WORD n)
{ //延时n毫秒
WORD i,j;
for(i=0; i<n; i++)
for(j=0; j<MS_COUNT/2;j++);
}
void ms(WORD n)
{ //延时n毫秒
WORD i,j;
for(i=0; i<n; i++)
for(j=0; j<MS_COUNT;j++);
}
void us(WORD n)
{ //延时n毫秒
WORD i,j;
for(i=0; i<n; i++)
for(j=0; j<MS_COUNT/1000;j++);
}
/////////////////////////////////////////////////////////////
void delay_s(WORD n)
{
WORD i;
for ( i=0; i<10*n; i++ ) ms(100);
}
/////////////////////////////////////////////////////////////
//UART口
void uart_init(void)
{
UCSRB = 0x00; //设置波特率时关闭发送和接收
UCSRA = 0x00;
UCSRC = (1<<UCSZ1)|(1<<UCSZ0); //8位数据+1位STOP位
UBRRL=(fosc/16/baud-1)%256;
UBRRH=(fosc/16/baud-1)/256; //设置波特率
UCSRB =(1<<RXCIE)|(1<<RXEN)|(1<<TXEN); //允许发送和接收
}
/////////////////////////////////////////////////////////////
//URAT口
BYTE uart_RxChar(void)
{
while(!(UCSRA& (1<<RXC)));//判断是否接收到数据
return UDR; //接收数据
}
/////////////////////////////////////////////////////////////
void uart_TxChar(BYTE c)
{
while (!(UCSRA&(1<<UDRE)));//判断上次发送是否完成
UDR=c; //发送数据
}
/////////////////////////////////////////////////////////////////////////////////
void put_bytes(BYTE *buf,int len)
{
int i;
for ( i=0; i<len; i++ ) uart_TxChar(buf[i]);
}
/////////////////////////////////////////////////////////////////////////////////
//ADC初始化
void adc_init(void)
{
ADCSRA = 0x00;
ADMUX =(1<<REFS0)|(adc_mux&0x0F);
ACSR =(1<<ACD);//关闭模拟比较器
ADCSRA=(1<<ADEN)|(1<<ADSC)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0) ;//128分频
us(2);
ADCSRA=(1<<ADEN)|(1<<ADSC)|(1<<ADIE)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0) ;//128分频
}
void AlarmPro(void)
{
BYTE i,j;
WORD temp;
for(i=0;i<num;i++){
if(i == 4) i=i+2;
temp = data[i]+(data[i+1]<<8);
alarmno = i;
if(temp < limit[i][2]) {
alarm_flag[i] = 3;
}
else {
if(temp < limit[i][1]) {
alarm_flag[i] = 2;
}
else {
if(temp < limit[i][0]) {
alarm_flag[i] = 1;
}
else{
alarm_flag[i] = 0;
}
}
}
if(alarm_flag[i] != Alarm_flag_prev[i]) {
SendGram(CMD_RETDATA);
Alarm_flag_prev[i] = alarm_flag[i];
return ;
}
}
}
/////////////////////////////////////////////////////////////////////////////////
//ADC完成中断
#pragma interrupt_handler adc_isr:iv_ADC
void adc_isr(void)
{
/*
uart_TxChar(0xeb);
uart_TxChar(0x90);
uart_TxChar(adc_mul);
uart_TxChar(ADMUX);
uart_TxChar(ADCL);
uart_TxChar(ADCH);
*/
data[adc_mux*2] = ADCL;
data[adc_mux*2+1] = ADCH;
adc_val = (data[adc_mux*2+1]<<8)|data[adc_mux*2];
++adc_mux;
if(num > 4) {
if(adc_mux == 4) adc_mux = adc_mux+2;
if(adc_mux > (num+1)) adc_mux = 0;
}
else if(adc_mux > (num-1)) adc_mux = 0;
}
/////////////////////////////////////////////////////////////////////////////////
BYTE GetLPC(BYTE *buf,short len)
{
short i;
BYTE c = 0xff;
for ( i=0; i<len; i++ ) c ^= buf[i];
return c;
}
/////////////////////////////////////////////////////////////////////////////////
void CallData(void)
{
tx_buf[0] = 0xeb;
tx_buf[1] = 0x90;
tx_buf[2] = CMD_ASKDATA;
tx_buf[3] = ID_L;
tx_buf[4] = ID_H;
tx_buf[5] = num;
tx_buf[6] = GetLPC(tx_buf,7);
tx_len = 7;
}
void RetData(void)
{
BYTE i;
tx_buf[0] = 0xeb;
tx_buf[1] = 0x90;
tx_buf[2] = CMD_RETDATA;
tx_buf[3] = ID_L;
tx_buf[4] = ID_H;
tx_buf[5] = num;
tx_buf[6] = startnum;
if(num <4){
for(i=7;i<num*2+7;i++){
tx_buf[i] = data[startnum*2+i-7];
}
tx_buf[7+num*2] = GetLPC(tx_buf,7+num*2);
tx_len = 8+num*2;
}
else{
if(startnum == 0){
for(i=7;i<15;i++){
tx_buf[i] = data[startnum*2+i-7];
}
tx_buf[15] = GetLPC(tx_buf,15);
tx_len = 16;
}
if(startnum == 4){
for(i=7;i<((num-4)*2+7);i++){
tx_buf[i] = data[(startnum+2)*2+i-7];
}
tx_buf[7+(num-4)*2] = GetLPC(tx_buf,7+(num-4)*2);
tx_len = 8+(num-4)*2;
}
}
}
/////////////////////////////////////////////////////////////////////////////////
void DownPara(BYTE no)
{
tx_buf[0] = 0xeb;
tx_buf[1] = 0x90;
tx_buf[2] = CMD_DOWNPARA;
tx_buf[3] = ID_L;
tx_buf[4] = ID_H;
tx_buf[5] = num;
tx_buf[6] = no;
tx_buf[7] = (limit[no][0] & 0xff);
tx_buf[8] = (limit[no][0] & 0xff00) >> 8;
tx_buf[9] = (limit[no][1] & 0xff);
tx_buf[10] = (limit[no][1] & 0xff00) >> 8;
tx_buf[11] = (limit[no][2] & 0xff);
tx_buf[12] = (limit[no][2] & 0xff00) >> 8;
tx_buf[13] = GetLPC(tx_buf,10);
tx_len = 14;
}
/////////////////////////////////////////////////////////////////////////////////
void RetPara(BYTE i)
{
tx_buf[0] = 0xeb;
tx_buf[1] = 0x90;
tx_buf[2] = CMD_RETPARA;
tx_buf[3] = ID_L;
tx_buf[4] = ID_H;
tx_buf[5] = num;
tx_buf[6] = i;
tx_buf[7] = (limit[i][0] & 0xff);
tx_buf[8] = (limit[i][0] & 0xff00) >> 8;
tx_buf[9] = (limit[i][1] & 0xff);
tx_buf[10] = (limit[i][1] & 0xff00) >> 8;
tx_buf[11] = (limit[i][2] & 0xff);
tx_buf[12] = (limit[i][2] & 0xff00) >> 8;
tx_buf[13] = GetLPC(tx_buf,13);
tx_len = 14;
}
/////////////////////////////////////////////////////////////////////////////////
void SetID(void)
{
tx_buf[0] = 0xeb;
tx_buf[1] = 0x90;
tx_buf[2] = CMD_SETID;
tx_buf[3] = ID_L;
tx_buf[4] = ID_H;
tx_buf[5] = GetLPC(tx_buf,5);
tx_len = 6;
}
void SetIDOK(void)
{
tx_buf[0] = 0xeb;
tx_buf[1] = 0x90;
tx_buf[2] = CMD_SETID_OK;
tx_buf[3] = ID_L;
tx_buf[4] = ID_H;
tx_buf[5] = GetLPC(tx_buf,5);
tx_len = 6;
}
void ReadID(void)
{
tx_buf[0] = 0xeb;
tx_buf[1] = 0x90;
tx_buf[2] = CMD_READID;
tx_buf[3] = GetLPC(tx_buf,3);
tx_len = 4;
}
/////////////////////////////////////////////////////////////
void SPI_MasterInit(void)
{
BYTE temp;
PORTD = 0x1C;
DDRD = 0x80 | 0x40 |0x20;
TX_EN_L;
TRX_CE_L;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -