📄 my_ipgmres.asv
字号:
function [x,iter,flg,inner,operations]=my_ipgmres(A,b,tol,restart,maxit,M,x0,epsilon,scale,p_type)
% IPGMRES
% [x,iter,flg,inner]=my_ipgmres(A,b,tol,restart,maxit,M,x0,epsilon,scale,p_type)
% this is the implementation of preconditioned GMRES method
% restart is the number of restart,
% epsilon and scale controle the inexact precondition
% p_type is the kind of the solver for precondition 1-CG; 2-MINRES; 3-GMRES
% flg=0 success; flg=1 fail;
% Developed by: Plum_Liliang UESTC China
% Date : 2006-07-01
% checking input arguments and assign default value
[m,n]=size(A);
if m~=n
error('The coefficient matrix must be square!')
end
[m_b,n_b]=size(b);
if n_b~=1
error('b must be a vector!')
end
if m~=m_b
error('The right-hand vecotor must have the same length of A!')
end
if nargin<2
error('Not enough input arguments!');
end
if (nargin<3) | isempty(tol)
tol=1e-6;
end
if nargin<4 | isempty(restart)
restart=min(10); % the maximum outer iteration is assigned to 10 defaultly
end
if nargin<5 | isempty(maxit)
maxit=min(20,n);
end
% if 'b' is zero then the solution is zero
norm_b=norm(b);
if norm_b==0
x=0;
iter=0;
flg=0;
inner=0;
x=0;
return;
end
% Check the preconditioners
if nargin>=6 & ~isempty(M)
existM=1;
if ~isequal(size(M),[m,n])
error('The preconditioners M should match the size of A!')
end
else
existM=0;
error('The preconditioners M should be assigned for this method!')
end
% check the initial guess
if nargin<7 | isempty(x0)
x0=zeros(n,1); % the initial guess is defaultly 0-vector;
else
[m_x,n_x]=size(x0);
if m_x~=n | n_x~=1
error ('The initial guess should be has the same size with the right-hand vector!');
end
end
if nargin<8 | isempty(epsilon)
epsilon=0.9;
end
if nargin<9 | isempty(scale)
scale=0.1;
end
if nargin<10 | isempty(p_type)
p_type=3;
end
if nargin>10
error('Too many input arguments!')
end
V=zeros(n,restart+1);
Z=V;
E1=zeros(n+1,1);E1(1,1)=1;
H=zeros(restart+1,restart+1);
flg=1;
operations=0;
op_p=0; op_ind=1;
for j=1:maxit
epsilon=epsilon*scale;
% set up of the inner iteration
r=b-A*x0;
norm_r=norm(r,2);
s_r=norm_r*E1;
V(:,1)=r/norm_r;
for i=1:restart
% preconditioning
if existM
switch p_type % the initial guess is the right-hand vector
case 1 % M is spd and CG method is applied.[x,iter,flg,inner,operations]=my_pgm(A,b,tol,restart,maxit,M1,M2,p_type,x0)
[Z(:,i),iter,flg,op_p] = my_pcg(M,V(:,i),epsilon,maxit*5,[],[],[],V(:,i));
if flg~=0
warning('Precondition is not convergent!');
end
case 2
[Z(:,i),flg,relres,iter_p,resvec,resveccg] = minres(M,V(:,i),epsilon,maxit*5,[],[],V(:,i));
if flg~=0
warning('Precondition is not convergent!');
end
case 3
[Z(:,i),iter,flg,inner,op_p]=my_pgm(M,V(:,i),epsilon,20,10,[],[],[],V(:,i));
if flg~=0
warning('Precondition is not convergent!');
end
end % switch
end % if exitsM
w=A*Z(:,i);
for k=1:i
H(k,i)=w'*V(:,k);
w=w-H(k,i)*V(:,k);
end
H(i+1,i)=norm(w,2);
V(:,i+1)=w/H(i+1,i);
for k=1:i-1
h_temp1=c(k)*H(k,i)-s(k)*H(k+1,i);
h_temp2=s(k)*H(k,i)+c(k)*H(k+1,i);
H(k,i)=h_temp1; H(k+1,i)=h_temp2;
end
temp=sqrt(H(i,i)^2+H(i+1,i)^2);
c(i)=H(i,i)/temp;
s(i)=-H(i+1,i)/temp;
H(i,i)=temp;H(i+1,i)=0;
s_r_temp=c(i)*s_r(i)-s(i)*s_r(i+1);
s_r(i+1)=s(i)*s_r(i)+c(i)*s_r(i+1);
s_r(i)=s_r_temp;
operations=op_p+operations+(2*i+2)*n+nz;
%%%%%%%%%%%%%%%%%%%---record--%%%%%%%%%%
% converge
if abs(s_r(i+1))<tol
flg=0;
inner=i;
iter=j;
break;
end
end % end i=1:restart
if flg==1
y=H(1:restart,1:restart)\s_r(1:restart,1);
x0=x0+Z(:,1:restart)*y;
elseif flg==0
y=H(1:inner,1:inner)\s_r(1:inner,1);
x0=x0+Z(:,1:inner)*y;
break;
end
end % j=1:maxit
x=x0;
if flg==1
inner=restart;
iter=maxit;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -