⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ksizelscv.m

📁 kde全称是kernel density estimation.基于核函数的概率密度估计方法。是模式识别中常用的算法之一
💻 M
字号:
function h = ksizeLSCV(npd)% "Least-Squares Cross Validation" estimate (Silverman)%% Copyright (C) 2005 Alexander Ihler; distributable under GPL -- see README.txt%  hROT = ksizeROT(npd);%  npd = kde(getPoints(npd),hROT,getWeights(npd),getType(npd));%  h =  golden(npd,@nLSCV,.1,1,30,1e-2);%  h = h * hROT;  [minm,maxm] = neighborMinMax(npd);  npd = kde(getPoints(npd),(minm+maxm)/2,getWeights(npd),getType(npd));  h =  golden(npd,@nLSCV,2*minm/(minm+maxm),1,2*maxm/(minm+maxm),1e-2);  h = h * (minm+maxm)/2;    function [minm,maxm] = neighborMinMax(npd)  maxm = sqrt(sum( (2*npd.ranges(:,1)).^2) );  minm = min(sqrt(sum( (2*npd.ranges(:,1:npd.N-1)).^2 ,1)),[],2);  minm = max(minm,1e-6);    function H = nLSCV(alpha,npd)  % only works for Gaussian kernels...  if (nargin < 2) error('ksize: LSCV: Error!  Too few arguments'); end;  if (npd.type == 0) alpha = alpha.^2; end;  npd.bandwidth = npd.bandwidth * 2*alpha;  H = mean(evaluate(npd,npd));		% drop factor of 2 from both  npd.bandwidth = npd.bandwidth / 2;  H = H - mean(evaluate(npd,npd,'lvout'));  npd.bandwidth = npd.bandwidth / alpha;  

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -