⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 blowfish.vhdl

📁 blowfish vhdl version
💻 VHDL
📖 第 1 页 / 共 2 页
字号:
-- Copyright © 2007 Wesley J. Landaker <wjl@icecavern.net>-- -- This program is free software: you can redistribute it and/or modify-- it under the terms of the GNU General Public License as published by-- the Free Software Foundation, either version 3 of the License, or-- (at your option) any later version.-- -- This program is distributed in the hope that it will be useful,-- but WITHOUT ANY WARRANTY; without even the implied warranty of-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the-- GNU General Public License for more details.-- -- You should have received a copy of the GNU General Public License-- along with this program.  If not, see <http://www.gnu.org/licenses/>.library ieee;use ieee.std_logic_1164.all;use ieee.numeric_std.all;library common;entity Blowfish is  generic (    param_KEY_WIDTH : natural := 448    );  port (    -- Clock & Reset    RST_I : in std_logic;    CLK_I : in std_logic;    -- Key FIFO Interface    KEY_EN_I   : in  std_logic; --new_key     KEY_DATA_I : in  std_logic_vector(param_KEY_WIDTH-1 downto 0); --key    KEY_FULL_O : out std_logic;    -- Input Data FIFO Interface    W_EN_I   : in  std_logic;   --new_data    W_ENC_I  : in  std_logic;   --encrypt     W_DATA_I : in  std_logic_vector(63 downto 0); --data_in    W_FULL_O : out std_logic;    -- Output Data FIFO Interface    R_EN_I    : in  std_logic;   --ready    R_DATA_O  : out std_logic_vector(63 downto 0); --data_out    R_EMPTY_O : out std_logic    );end entity;architecture rtl of Blowfish is  signal key_r_en    : std_logic;  signal key_r_data  : std_logic_vector(447 downto 0);  signal key_r_empty : std_logic;  signal i_data_r_en    : std_logic;  signal i_data_r_enc   : std_logic;  signal i_data_r_data  : std_logic_vector(63 downto 0);  signal i_data_r_empty : std_logic;  signal o_data_w_en   : std_logic;  signal o_data_w_full : std_logic;  signal Pi_addr : std_logic_vector(9 downto 0);  signal Pi_data : std_logic_vector(31 downto 0);  signal P_enc      : std_logic;  signal P_r_en     : std_logic;  signal P_r_addr   : std_logic_vector(4 downto 0);  signal P_r_data   : std_logic_vector(31 downto 0);  signal p_w_en     : std_logic;  signal p_w_addr   : std_logic_vector(4 downto 0);  signal p_w_data_i : std_logic_vector(31 downto 0);  signal S1_r_en     : std_logic;  signal S1_r_addr   : std_logic_vector(7 downto 0);  signal S1_r_data   : std_logic_vector(31 downto 0);  signal S1_w_en     : std_logic;  signal S1_w_addr   : std_logic_vector(7 downto 0);  signal S1_w_data_i : std_logic_vector(31 downto 0);  signal S2_r_en     : std_logic;  signal S2_r_addr   : std_logic_vector(7 downto 0);  signal S2_r_data   : std_logic_vector(31 downto 0);  signal S2_w_en     : std_logic;  signal S2_w_addr   : std_logic_vector(7 downto 0);  signal S2_w_data_i : std_logic_vector(31 downto 0);  signal S3_r_en     : std_logic;  signal S3_r_addr   : std_logic_vector(7 downto 0);  signal S3_r_data   : std_logic_vector(31 downto 0);  signal S3_w_en     : std_logic;  signal S3_w_addr   : std_logic_vector(7 downto 0);  signal S3_w_data_i : std_logic_vector(31 downto 0);  signal S4_r_en     : std_logic;  signal S4_r_addr   : std_logic_vector(7 downto 0);  signal S4_r_data   : std_logic_vector(31 downto 0);  signal S4_w_en     : std_logic;  signal S4_w_addr   : std_logic_vector(7 downto 0);  signal S4_w_data_i : std_logic_vector(31 downto 0);  signal cipher_en_i   : std_logic;  signal cipher_data_i : std_logic_vector(63 downto 0);  signal cipher_busy   : std_logic;  signal cipher_en_o   : std_logic;  signal cipher_data_o : std_logic_vector(63 downto 0);  signal cipher_p_init : std_logic;  begin  block_key : block is    signal key_r_data_raw : std_logic_vector(KEY_DATA_I'range);  begin    u_key_FIFO : entity common.MiniFIFO      generic map (        param_DATA_WIDTH => param_KEY_WIDTH        )      port map (        RST_I     => RST_I,        CLK_I     => CLK_I,        W_EN_I    => KEY_EN_I,        W_DATA_I  => KEY_DATA_I,        W_FULL_O  => KEY_FULL_O,        R_EN_I    => key_r_en,        R_DATA_O  => key_r_data_raw,        R_EMPTY_O => key_r_empty        );    proc_key_r_data : process (key_r_data_raw) is      variable j : natural;    begin      j := key_r_data_raw'high;      for i in 447 downto 0 loop        key_r_Data(i) <= key_r_data_raw(j);        if j = 0 then          j := key_r_data_raw'high;        else          j := j - 1;        end if;      end loop;    end process;      end block;  u_i_data_FIFO : entity common.MiniFIFO    generic map (      param_DATA_WIDTH => 65      )    port map (      RST_I                 => RST_I,      CLK_I                 => CLK_I,      W_EN_I                => W_EN_I,      W_DATA_I(64)          => W_ENC_I,      W_DATA_I(63 downto 0) => W_DATA_I,      W_FULL_O              => W_FULL_O,      R_EN_I                => i_data_r_en,      R_DATA_O(64)          => i_data_r_enc,      R_DATA_O(63 downto 0) => i_data_r_data,      R_EMPTY_O             => i_data_r_empty      );  u_o_data_FIFO : entity common.MiniFIFO    generic map (      param_DATA_WIDTH => 64      )    port map (      RST_I     => RST_I,      CLK_I     => CLK_I,      W_EN_I    => o_data_w_en,      W_DATA_I  => cipher_data_o,      W_FULL_O  => o_data_w_full,      R_EN_I    => R_EN_I,      R_DATA_O  => R_DATA_O,      R_EMPTY_O => R_EMPTY_O      );  block_control : block is    type state_t is (S_STARTUP, S_IDLE, S_CIPHER, S_KEY, S_KEY_PARRAY_INIT, S_KEY_SBOX_INIT,                     S_KEY_PARRAY_CIPHER, S_KEY_PARRAY_WRITE_HIGH, S_KEY_PARRAY_WRITE_LOW,                     S_KEY_SBOX_CIPHER, S_KEY_SBOX_WRITE_HIGH, S_KEY_SBOX_WRITE_LOW);    signal state, next_state : state_t := S_IDLE;    signal count, next_count : unsigned(9 downto 0);    signal prev_P_enc        : std_logic;  begin    S1_w_addr <= std_logic_vector(count(7 downto 0));    S2_w_addr <= std_logic_vector(count(7 downto 0));    S3_w_addr <= std_logic_vector(count(7 downto 0));    S4_w_addr <= std_logic_vector(count(7 downto 0));        proc_next_state : process (P_enc, Pi_data, cipher_busy, cipher_data_o,                               cipher_en_o, count, i_data_r_data,                               i_data_r_empty, i_data_r_enc, key_r_data,                               key_r_empty, next_count, o_data_w_full,                               prev_P_enc, state) is      subtype pcount_t is natural range 0 to 17;      variable pcount : natural;    begin      key_r_en <= '0';      i_data_r_en <= '0';      o_data_w_en <= '0';      Pi_addr <= std_logic_vector(next_count);      P_enc      <= '1';      p_w_en     <= '0';      p_w_addr   <= std_logic_vector(count(4 downto 0));      p_w_data_i <= (others => '-');      S1_w_en     <= '0';      S1_w_data_i <= Pi_data;      S2_w_en     <= '0';      S2_w_data_i <= Pi_data;      S3_w_en     <= '0';      S3_w_data_i <= Pi_data;      S4_w_en     <= '0';      S4_w_data_i <= Pi_data;      cipher_en_i   <= '0';      cipher_data_i <= i_data_r_data;      cipher_p_init <= '0';      next_state <= state;      next_count <= count;      case state is                when S_IDLE =>          P_enc <= i_data_r_enc;          if prev_P_enc /= P_enc then            cipher_p_init <= '1';          elsif cipher_busy = '0' then

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -