📄 geneticsearch.java
字号:
} // select new population boolean [] bSelected = new boolean [getDescendantPopulationSize()]; for (int i = 0; i < getPopulationSize(); i++) { int iSelected = 0; if (m_bUseTournamentSelection) { // use tournament selection iSelected = m_random.nextInt(getDescendantPopulationSize()); while (bSelected[iSelected]) { iSelected = (iSelected + 1) % getDescendantPopulationSize(); } int iSelected2 = m_random.nextInt(getDescendantPopulationSize()); while (bSelected[iSelected2]) { iSelected2 = (iSelected2 + 1) % getDescendantPopulationSize(); } if (descendantPopulation[iSelected2].getScore() > descendantPopulation[iSelected].getScore()) { iSelected = iSelected2; } } else { // find best scoring network in population while (bSelected[iSelected]) { iSelected++; } double fScore = descendantPopulation[iSelected].getScore(); for (int j = 0; j < getDescendantPopulationSize(); j++) { if (!bSelected[j] && descendantPopulation[j].getScore() > fScore) { fScore = descendantPopulation[j].getScore(); iSelected = j; } } } population[i] = descendantPopulation[iSelected]; bSelected[iSelected] = true; } } // restore current network to best network copyParentSets(bayesNet, bestBayesNet); // free up memory bestBayesNet = null; } // search /** copyParentSets copies parent sets of source to dest BayesNet * @param dest destination network * @param source source network */ void copyParentSets(BayesNet dest, BayesNet source) { int nNodes = source.getNrOfNodes(); // clear parent set first for (int iNode = 0; iNode < nNodes; iNode++) { dest.getParentSet(iNode).copy(source.getParentSet(iNode)); } } // CopyParentSets /** * @return number of runs */ public int getRuns() { return m_nRuns; } // getRuns /** * Sets the number of runs * @param nRuns The number of runs to set */ public void setRuns(int nRuns) { m_nRuns = nRuns; } // setRuns /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(7); newVector.addElement(new Option("\tPopulation size", "L", 1, "-L <integer>")); newVector.addElement(new Option("\tDescendant population size", "A", 1, "-A <integer>")); newVector.addElement(new Option("\tNumber of runs", "U", 1, "-U <integer>")); newVector.addElement(new Option("\tUse mutation.\n\t(default true)", "M", 0, "-M")); newVector.addElement(new Option("\tUse cross-over.\n\t(default true)", "C", 0, "-C")); newVector.addElement(new Option("\tUse tournament selection (true) or maximum subpopulatin (false).\n\t(default false)", "O", 0, "-O")); newVector.addElement(new Option("\tRandom number seed", "R", 1, "-R <seed>")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } return newVector.elements(); } // listOptions /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -L <integer> * Population size</pre> * * <pre> -A <integer> * Descendant population size</pre> * * <pre> -U <integer> * Number of runs</pre> * * <pre> -M * Use mutation. * (default true)</pre> * * <pre> -C * Use cross-over. * (default true)</pre> * * <pre> -O * Use tournament selection (true) or maximum subpopulatin (false). * (default false)</pre> * * <pre> -R <seed> * Random number seed</pre> * * <pre> -mbc * Applies a Markov Blanket correction to the network structure, * after a network structure is learned. This ensures that all * nodes in the network are part of the Markov blanket of the * classifier node.</pre> * * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV] * Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre> * * <pre> -Q * Use probabilistic or 0/1 scoring. * (default probabilistic scoring)</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String sPopulationSize = Utils.getOption('L', options); if (sPopulationSize.length() != 0) { setPopulationSize(Integer.parseInt(sPopulationSize)); } String sDescendantPopulationSize = Utils.getOption('A', options); if (sDescendantPopulationSize.length() != 0) { setDescendantPopulationSize(Integer.parseInt(sDescendantPopulationSize)); } String sRuns = Utils.getOption('U', options); if (sRuns.length() != 0) { setRuns(Integer.parseInt(sRuns)); } String sSeed = Utils.getOption('R', options); if (sSeed.length() != 0) { setSeed(Integer.parseInt(sSeed)); } setUseMutation(Utils.getFlag('M', options)); setUseCrossOver(Utils.getFlag('C', options)); setUseTournamentSelection(Utils.getFlag('O', options)); super.setOptions(options); } // setOptions /** * Gets the current settings of the search algorithm. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String[] superOptions = super.getOptions(); String[] options = new String[11 + superOptions.length]; int current = 0; options[current++] = "-L"; options[current++] = "" + getPopulationSize(); options[current++] = "-A"; options[current++] = "" + getDescendantPopulationSize(); options[current++] = "-U"; options[current++] = "" + getRuns(); options[current++] = "-R"; options[current++] = "" + getSeed(); if (getUseMutation()) { options[current++] = "-M"; } if (getUseCrossOver()) { options[current++] = "-C"; } if (getUseTournamentSelection()) { options[current++] = "-O"; } // insert options from parent class for (int iOption = 0; iOption < superOptions.length; iOption++) { options[current++] = superOptions[iOption]; } // Fill up rest with empty strings, not nulls! while (current < options.length) { options[current++] = ""; } return options; } // getOptions /** * @return whether cross-over is used */ public boolean getUseCrossOver() { return m_bUseCrossOver; } /** * @return whether mutation is used */ public boolean getUseMutation() { return m_bUseMutation; } /** * @return descendant population size */ public int getDescendantPopulationSize() { return m_nDescendantPopulationSize; } /** * @return population size */ public int getPopulationSize() { return m_nPopulationSize; } /** * @param bUseCrossOver sets whether cross-over is used */ public void setUseCrossOver(boolean bUseCrossOver) { m_bUseCrossOver = bUseCrossOver; } /** * @param bUseMutation sets whether mutation is used */ public void setUseMutation(boolean bUseMutation) { m_bUseMutation = bUseMutation; } /** * @return whether Tournament Selection (true) or Maximum Sub-Population (false) should be used */ public boolean getUseTournamentSelection() { return m_bUseTournamentSelection; } /** * @param bUseTournamentSelection sets whether Tournament Selection or Maximum Sub-Population should be used */ public void setUseTournamentSelection(boolean bUseTournamentSelection) { m_bUseTournamentSelection = bUseTournamentSelection; } /** * @param iDescendantPopulationSize sets descendant population size */ public void setDescendantPopulationSize(int iDescendantPopulationSize) { m_nDescendantPopulationSize = iDescendantPopulationSize; } /** * @param iPopulationSize sets population size */ public void setPopulationSize(int iPopulationSize) { m_nPopulationSize = iPopulationSize; } /** * @return random number seed */ public int getSeed() { return m_nSeed; } // getSeed /** * Sets the random number seed * @param nSeed The number of the seed to set */ public void setSeed(int nSeed) { m_nSeed = nSeed; } // setSeed /** * This will return a string describing the classifier. * @return The string. */ public String globalInfo() { return "This Bayes Network learning algorithm uses genetic search for finding a well scoring " + "Bayes network structure. Genetic search works by having a population of Bayes network structures " + "and allow them to mutate and apply cross over to get offspring. The best network structure " + "found during the process is returned."; } // globalInfo /** * @return a string to describe the Runs option. */ public String runsTipText() { return "Sets the number of generations of Bayes network structure populations."; } // runsTipText /** * @return a string to describe the Seed option. */ public String seedTipText() { return "Initialization value for random number generator." + " Setting the seed allows replicability of experiments."; } // seedTipText /** * @return a string to describe the Population Size option. */ public String populationSizeTipText() { return "Sets the size of the population of network structures that is selected each generation."; } // populationSizeTipText /** * @return a string to describe the Descendant Population Size option. */ public String descendantPopulationSizeTipText() { return "Sets the size of the population of descendants that is created each generation."; } // descendantPopulationSizeTipText /** * @return a string to describe the Use Mutation option. */ public String useMutationTipText() { return "Determines whether mutation is allowed. Mutation flips a bit in the bit " + "representation of the network structure. At least one of mutation or cross-over " + "should be used."; } // useMutationTipText /** * @return a string to describe the Use Cross-Over option. */ public String useCrossOverTipText() { return "Determines whether cross-over is allowed. Cross over combined the bit " + "representations of network structure by taking a random first k bits of one" + "and adding the remainder of the other. At least one of mutation or cross-over " + "should be used."; } // useCrossOverTipText /** * @return a string to describe the Use Tournament Selection option. */ public String useTournamentSelectionTipText() { return "Determines the method of selecting a population. When set to true, tournament " + "selection is used (pick two at random and the highest is allowed to continue). " + "When set to false, the top scoring network structures are selected."; } // useTournamentSelectionTipText /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.5 $"); }} // GeneticSearch
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -