⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tabusearch.java

📁 数据挖掘聚类算法:bayes源代码,使用JAVA语言实现
💻 JAVA
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. *  * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * TabuSearch.java * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand *  */ package weka.classifiers.bayes.net.search.global;import weka.classifiers.bayes.BayesNet;import weka.core.Instances;import weka.core.Option;import weka.core.RevisionUtils;import weka.core.TechnicalInformation;import weka.core.TechnicalInformation.Type;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import java.util.Enumeration;import java.util.Vector;/**  <!-- globalinfo-start --> * This Bayes Network learning algorithm uses tabu search for finding a well scoring Bayes network structure. Tabu search is hill climbing till an optimum is reached. The following step is the least worst possible step. The last X steps are kept in a list and none of the steps in this so called tabu list is considered in taking the next step. The best network found in this traversal is returned.<br/> * <br/> * For more information see:<br/> * <br/> * R.R. Bouckaert (1995). Bayesian Belief Networks: from Construction to Inference. Utrecht, Netherlands. * <p/> <!-- globalinfo-end --> *  <!-- technical-bibtex-start --> * BibTeX: * <pre> * &#64;phdthesis{Bouckaert1995, *    address = {Utrecht, Netherlands}, *    author = {R.R. Bouckaert}, *    institution = {University of Utrecht}, *    title = {Bayesian Belief Networks: from Construction to Inference}, *    year = {1995} * } * </pre> * <p/> <!-- technical-bibtex-end --> *  <!-- options-start --> * Valid options are: <p/> *  * <pre> -L &lt;integer&gt; *  Tabu list length</pre> *  * <pre> -U &lt;integer&gt; *  Number of runs</pre> *  * <pre> -P &lt;nr of parents&gt; *  Maximum number of parents</pre> *  * <pre> -R *  Use arc reversal operation. *  (default false)</pre> *  * <pre> -P &lt;nr of parents&gt; *  Maximum number of parents</pre> *  * <pre> -R *  Use arc reversal operation. *  (default false)</pre> *  * <pre> -N *  Initial structure is empty (instead of Naive Bayes)</pre> *  * <pre> -mbc *  Applies a Markov Blanket correction to the network structure,  *  after a network structure is learned. This ensures that all  *  nodes in the network are part of the Markov blanket of the  *  classifier node.</pre> *  * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV] *  Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre> *  * <pre> -Q *  Use probabilistic or 0/1 scoring. *  (default probabilistic scoring)</pre> *  <!-- options-end --> * * @author Remco Bouckaert (rrb@xm.co.nz) * @version $Revision: 1.5 $ */public class TabuSearch     extends HillClimber    implements TechnicalInformationHandler {    /** for serialization */    static final long serialVersionUID = 1176705618756672292L;      /** number of runs **/    int m_nRuns = 10;	    		/** size of tabu list **/	int m_nTabuList = 5;	/** the actual tabu list **/	Operation[] m_oTabuList = null;	/**	 * Returns an instance of a TechnicalInformation object, containing 	 * detailed information about the technical background of this class,	 * e.g., paper reference or book this class is based on.	 * 	 * @return the technical information about this class	 */	public TechnicalInformation getTechnicalInformation() {	  TechnicalInformation 	result;	  	  result = new TechnicalInformation(Type.PHDTHESIS);	  result.setValue(Field.AUTHOR, "R.R. Bouckaert");	  result.setValue(Field.YEAR, "1995");	  result.setValue(Field.TITLE, "Bayesian Belief Networks: from Construction to Inference");	  result.setValue(Field.INSTITUTION, "University of Utrecht");	  result.setValue(Field.ADDRESS, "Utrecht, Netherlands");	  	  return result;	}	/**	 * search determines the network structure/graph of the network	 * with the Tabu search algorithm.	 * 	 * @param bayesNet the network to use	 * @param instances the instances to use	 * @throws Exception if something goes wrong	 */	protected void search(BayesNet bayesNet, Instances instances) throws Exception {        m_oTabuList = new Operation[m_nTabuList];        int iCurrentTabuList = 0;		// keeps track of score pf best structure found so far 		double fBestScore;			double fCurrentScore = calcScore(bayesNet);		// keeps track of best structure found so far 		BayesNet bestBayesNet;		// initialize bestBayesNet		fBestScore = fCurrentScore;		bestBayesNet = new BayesNet();		bestBayesNet.m_Instances = instances;		bestBayesNet.initStructure();		copyParentSets(bestBayesNet, bayesNet);		                        // go do the search                for (int iRun = 0; iRun < m_nRuns; iRun++) {            Operation oOperation = getOptimalOperation(bayesNet, instances);			performOperation(bayesNet, instances, oOperation);            // sanity check            if (oOperation  == null) {				throw new Exception("Panic: could not find any step to make. Tabu list too long?");            }            // update tabu list            m_oTabuList[iCurrentTabuList] = oOperation;            iCurrentTabuList = (iCurrentTabuList + 1) % m_nTabuList;			fCurrentScore += oOperation.m_fScore;			// keep track of best network seen so far			if (fCurrentScore > fBestScore) {				fBestScore = fCurrentScore;				copyParentSets(bestBayesNet, bayesNet);			}			if (bayesNet.getDebug()) {				printTabuList();			}        }                // restore current network to best network		copyParentSets(bayesNet, bestBayesNet);				// free up memory		bestBayesNet = null;    } // search	/** copyParentSets copies parent sets of source to dest BayesNet	 * @param dest destination network	 * @param source source network	 */	void copyParentSets(BayesNet dest, BayesNet source) {		int nNodes = source.getNrOfNodes();		// clear parent set first		for (int iNode = 0; iNode < nNodes; iNode++) {			dest.getParentSet(iNode).copy(source.getParentSet(iNode));		}			} // CopyParentSets	/** check whether the operation is not in the tabu list	 * @param oOperation operation to be checked	 * @return true if operation is not in the tabu list	 */	boolean isNotTabu(Operation oOperation) {		for (int iTabu = 0; iTabu < m_nTabuList; iTabu++) {			if (oOperation.equals(m_oTabuList[iTabu])) {					return false;				}		}		return true;	} // isNotTabu	/** print tabu list for debugging purposes.	 */	void printTabuList() {		for (int i = 0; i < m_nTabuList; i++) {			Operation o = m_oTabuList[i];			if (o != null) {				if (o.m_nOperation == 0) {System.out.print(" +(");} else {System.out.print(" -(");}				System.out.print(o.m_nTail + "->" + o.m_nHead + ")");			}		}		System.out.println();	} // printTabuList    /**    * @return number of runs    */    public int getRuns() {        return m_nRuns;    } // getRuns    /**     * Sets the number of runs     * @param nRuns The number of runs to set     */    public void setRuns(int nRuns) {        m_nRuns = nRuns;    } // setRuns    /**     * @return the Tabu List length     */    public int getTabuList() {        return m_nTabuList;    } // getTabuList    /**     * Sets the Tabu List length.     * @param nTabuList The nTabuList to set     */    public void setTabuList(int nTabuList) {        m_nTabuList = nTabuList;    } // setTabuList	/**	 * Returns an enumeration describing the available options.	 *	 * @return an enumeration of all the available options.	 */	public Enumeration listOptions() {		Vector newVector = new Vector(4);		newVector.addElement(new Option("\tTabu list length", "L", 1, "-L <integer>"));		newVector.addElement(new Option("\tNumber of runs", "U", 1, "-U <integer>"));		newVector.addElement(new Option("\tMaximum number of parents", "P", 1, "-P <nr of parents>"));		newVector.addElement(new Option("\tUse arc reversal operation.\n\t(default false)", "R", 0, "-R"));		Enumeration enu = super.listOptions();		while (enu.hasMoreElements()) {			newVector.addElement(enu.nextElement());		}		return newVector.elements();	} // listOptions	/**	 * Parses a given list of options. <p/>	 *	 <!-- options-start -->	 * Valid options are: <p/>	 * 	 * <pre> -L &lt;integer&gt;	 *  Tabu list length</pre>	 * 	 * <pre> -U &lt;integer&gt;	 *  Number of runs</pre>	 * 	 * <pre> -P &lt;nr of parents&gt;	 *  Maximum number of parents</pre>	 * 	 * <pre> -R	 *  Use arc reversal operation.	 *  (default false)</pre>	 * 	 * <pre> -P &lt;nr of parents&gt;	 *  Maximum number of parents</pre>	 * 	 * <pre> -R	 *  Use arc reversal operation.	 *  (default false)</pre>	 * 	 * <pre> -N	 *  Initial structure is empty (instead of Naive Bayes)</pre>	 * 	 * <pre> -mbc	 *  Applies a Markov Blanket correction to the network structure, 	 *  after a network structure is learned. This ensures that all 	 *  nodes in the network are part of the Markov blanket of the 	 *  classifier node.</pre>	 * 	 * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV]	 *  Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre>	 * 	 * <pre> -Q	 *  Use probabilistic or 0/1 scoring.	 *  (default probabilistic scoring)</pre>	 * 	 <!-- options-end -->	 *	 * @param options the list of options as an array of strings	 * @throws Exception if an option is not supported	 */	public void setOptions(String[] options) throws Exception {		String sTabuList = Utils.getOption('L', options);		if (sTabuList.length() != 0) {			setTabuList(Integer.parseInt(sTabuList));		}		String sRuns = Utils.getOption('U', options);		if (sRuns.length() != 0) {			setRuns(Integer.parseInt(sRuns));		}				super.setOptions(options);	} // setOptions	/**	 * Gets the current settings of the search algorithm.	 *	 * @return an array of strings suitable for passing to setOptions	 */	public String[] getOptions() {		String[] superOptions = super.getOptions();		String[] options = new String[7 + superOptions.length];		int current = 0;				options[current++] = "-L";		options[current++] = "" + getTabuList();		options[current++] = "-U";		options[current++] = "" + getRuns();		// insert options from parent class		for (int iOption = 0; iOption < superOptions.length; iOption++) {			options[current++] = superOptions[iOption];		}		// Fill up rest with empty strings, not nulls!		while (current < options.length) {			options[current++] = "";		}		return options;	} // getOptions	/**	 * This will return a string describing the classifier.	 * @return The string.	 */	public String globalInfo() {		return "This Bayes Network learning algorithm uses tabu search for finding a well scoring " +		"Bayes network structure. Tabu search is hill climbing till an optimum is reached. The " +		"following step is the least worst possible step. The last X steps are kept in a list and " +		"none of the steps in this so called tabu list is considered in taking the next step. " +		"The best network found in this traversal is returned.\n\n"		+ "For more information see:\n\n"		+ getTechnicalInformation().toString();	} // globalInfo		/**	 * @return a string to describe the Runs option.	 */	public String runsTipText() {	  return "Sets the number of steps to be performed.";	} // runsTipText	/**	 * @return a string to describe the TabuList option.	 */	public String tabuListTipText() {	  return "Sets the length of the tabu list.";	} // tabuListTipText	/**	 * Returns the revision string.	 * 	 * @return		the revision	 */	public String getRevision() {	  return RevisionUtils.extract("$Revision: 1.5 $");	}} // TabuSearch

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -