📄 icssearchalgorithm.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * ICSSearchAlgorithm.java * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand * */package weka.classifiers.bayes.net.search.ci;import weka.classifiers.bayes.BayesNet;import weka.classifiers.bayes.net.ParentSet;import weka.core.Instances;import weka.core.Option;import weka.core.RevisionHandler;import weka.core.RevisionUtils;import weka.core.Utils;import java.io.FileReader;import java.util.Enumeration;import java.util.Vector;/** <!-- globalinfo-start --> * This Bayes Network learning algorithm uses conditional independence tests to find a skeleton, finds V-nodes and applies a set of rules to find the directions of the remaining arrows. * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -cardinality <num> * When determining whether an edge exists a search is performed * for a set Z that separates the nodes. MaxCardinality determines * the maximum size of the set Z. This greatly influences the * length of the search. (default 2)</pre> * * <pre> -mbc * Applies a Markov Blanket correction to the network structure, * after a network structure is learned. This ensures that all * nodes in the network are part of the Markov blanket of the * classifier node.</pre> * * <pre> -S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES] * Score type (BAYES, BDeu, MDL, ENTROPY and AIC)</pre> * <!-- options-end --> * * @author Remco Bouckaert * @version $Revision: 1.8 $ */ public class ICSSearchAlgorithm extends CISearchAlgorithm { /** for serialization */ static final long serialVersionUID = -2510985917284798576L; /** * returns the name of the attribute with the given index * * @param iAttribute the index of the attribute * @return the name of the attribute */ String name(int iAttribute) { return m_instances.attribute(iAttribute).name(); } /** * returns the number of attributes * * @return the number of attributes */ int maxn() { return m_instances.numAttributes(); } /** maximum size of separating set **/ private int m_nMaxCardinality = 2; /** * sets the cardinality * * @param nMaxCardinality the max cardinality */ public void setMaxCardinality(int nMaxCardinality) { m_nMaxCardinality = nMaxCardinality; } /** * returns the max cardinality * * @return the max cardinality */ public int getMaxCardinality() { return m_nMaxCardinality; } class SeparationSet implements RevisionHandler { public int [] m_set; /** * constructor */ public SeparationSet() { m_set= new int [getMaxCardinality() + 1]; } // c'tor public boolean contains(int nItem) { for (int iItem = 0; iItem < getMaxCardinality() && m_set[iItem] != -1; iItem++) { if (m_set[iItem] == nItem) { return true; } } return false; } // contains /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision: 1.8 $"); } } // class sepset /** * Search for Bayes network structure using ICS algorithm * @param bayesNet datastructure to build network structure for * @param instances data set to learn from * @throws Exception if something goes wrong */ protected void search(BayesNet bayesNet, Instances instances) throws Exception { // init m_BayesNet = bayesNet; m_instances = instances; boolean edges[][] = new boolean [maxn() + 1][]; boolean [] [] arrows = new boolean [maxn() + 1][]; SeparationSet [] [] sepsets = new SeparationSet [maxn() + 1][]; for (int iNode = 0 ; iNode < maxn() + 1; iNode++) { edges[iNode] = new boolean[maxn()]; arrows[iNode] = new boolean[maxn()]; sepsets[iNode] = new SeparationSet[maxn()]; } calcDependencyGraph(edges, sepsets); calcVeeNodes(edges, arrows, sepsets); calcArcDirections(edges, arrows); // transfrom into BayesNet datastructure for (int iNode = 0; iNode < maxn(); iNode++) { // clear parent set of AttributeX ParentSet oParentSet = m_BayesNet.getParentSet(iNode); while (oParentSet.getNrOfParents() > 0) { oParentSet.deleteLastParent(m_instances); } for (int iParent = 0; iParent < maxn(); iParent++) { if (arrows[iParent][iNode]) { oParentSet.addParent(iParent, m_instances); } } } } // search /** CalcDependencyGraph determines the skeleton of the BayesNetwork by * starting with a complete graph and removing edges (a--b) if it can * find a set Z such that a and b conditionally independent given Z. * The set Z is found by trying all possible subsets of nodes adjacent * to a and b, first of size 0, then of size 1, etc. up to size * m_nMaxCardinality * @param edges boolean matrix representing the edges * @param sepsets set of separating sets */ void calcDependencyGraph(boolean[][] edges, SeparationSet[][] sepsets) { /*calc undirected graph a-b iff D(a,S,b) for all S)*/ SeparationSet oSepSet; for (int iNode1 = 0; iNode1 < maxn(); iNode1++) { /*start with complete graph*/ for (int iNode2 = 0; iNode2 < maxn(); iNode2++) { edges[iNode1][iNode2] = true; } } for (int iNode1 = 0; iNode1 < maxn(); iNode1++) { edges[iNode1][iNode1] = false; } for (int iCardinality = 0; iCardinality <= getMaxCardinality(); iCardinality++) { for (int iNode1 = 0; iNode1 <= maxn() - 2; iNode1++) { for (int iNode2 = iNode1 + 1; iNode2 < maxn(); iNode2++) { if (edges[iNode1][iNode2]) { oSepSet = existsSepSet(iNode1, iNode2, iCardinality, edges); if (oSepSet != null) { edges[iNode1][iNode2] = false; edges[iNode2][iNode1] = false; sepsets[iNode1][iNode2] = oSepSet; sepsets[iNode2][iNode1] = oSepSet; // report separating set System.err.print("I(" + name(iNode1) + ", {"); for (int iNode3 = 0; iNode3 < iCardinality; iNode3++) { System.err.print(name(oSepSet.m_set[iNode3]) + " "); } System.err.print("} ," + name(iNode2) + ")\n"); } } } } // report current state of dependency graph System.err.print(iCardinality + " "); for (int iNode1 = 0; iNode1 < maxn(); iNode1++) { System.err.print(name(iNode1) + " "); } System.err.print('\n'); for (int iNode1 = 0; iNode1 < maxn(); iNode1++) { for (int iNode2 = 0; iNode2 < maxn(); iNode2++) { if (edges[iNode1][iNode2]) System.err.print("X "); else System.err.print(". "); } System.err.print(name(iNode1) + " "); System.err.print('\n'); } } } /*CalcDependencyGraph*/ /** ExistsSepSet tests if a separating set Z of node a and b exists of given * cardiniality exists. * The set Z is found by trying all possible subsets of nodes adjacent * to both a and b of the requested cardinality. * @param iNode1 index of first node a * @param iNode2 index of second node b * @param nCardinality size of the separating set Z * @param edges * @return SeparationSet containing set that separates iNode1 and iNode2 or null if no such set exists */ SeparationSet existsSepSet(int iNode1, int iNode2, int nCardinality, boolean [] [] edges) { /*Test if a separating set of node d and e exists of cardiniality k*/// int iNode1_, iNode2_; int iNode3, iZ; SeparationSet Z = new SeparationSet(); Z.m_set[nCardinality] = -1;// iNode1_ = iNode1;// iNode2_ = iNode2; // find first candidate separating set Z if (nCardinality > 0) { Z.m_set[0] = next(-1, iNode1, iNode2, edges); iNode3 = 1; while (iNode3 < nCardinality) { Z.m_set[iNode3] = next(Z.m_set[iNode3 - 1], iNode1, iNode2, edges); iNode3++; } } if (nCardinality > 0) { iZ = maxn() - Z.m_set[nCardinality - 1] - 1; } else { iZ = 0; } while (iZ >= 0) { //check if candidate separating set makes iNode2_ and iNode1_ independent if (isConditionalIndependent(iNode2, iNode1, Z.m_set, nCardinality)) { return Z; } // calc next candidate separating set if (nCardinality > 0) { Z.m_set[nCardinality - 1] = next(Z.m_set[nCardinality - 1], iNode1, iNode2, edges); } iZ = nCardinality - 1; while (iZ >= 0 && Z.m_set[iZ] >= maxn()) { iZ = nCardinality - 1; while (iZ >= 0 && Z.m_set[iZ] >= maxn()) { iZ--; } if (iZ < 0) { break; } Z.m_set[iZ] = next(Z.m_set[iZ], iNode1, iNode2, edges); for (iNode3 = iZ + 1; iNode3 < nCardinality; iNode3++) { Z.m_set[iNode3] = next(Z.m_set[iNode3 - 1], iNode1, iNode2, edges); } iZ = nCardinality - 1; } } return null; } /*ExistsSepSet*/ /** * determine index of node that makes next candidate separating set * adjacent to iNode1 and iNode2, but not iNode2 itself * @param x index of current node * @param iNode1 first node * @param iNode2 second node (must be larger than iNode1) * @param edges skeleton so far * @return int index of next node adjacent to iNode1 after x */ int next(int x, int iNode1, int iNode2, boolean [] [] edges) { x++; while (x < maxn() && (!edges[iNode1][x] || !edges[iNode2][x] ||x == iNode2)) { x++; } return x; } /*next*/ /** CalcVeeNodes tries to find V-nodes, i.e. nodes a,b,c such that
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -