⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tan.java

📁 数据挖掘聚类算法:bayes源代码,使用JAVA语言实现
💻 JAVA
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. *  * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * TAN.java * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand *  */package weka.classifiers.bayes.net.search.local;import weka.classifiers.bayes.BayesNet;import weka.core.Instances;import weka.core.RevisionUtils;import weka.core.TechnicalInformation;import weka.core.TechnicalInformation.Type;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformationHandler;import java.util.Enumeration;/**  <!-- globalinfo-start --> * This Bayes Network learning algorithm determines the maximum weight spanning tree  and returns a Naive Bayes network augmented with a tree.<br/> * <br/> * For more information see:<br/> * <br/> * N. Friedman, D. Geiger, M. Goldszmidt (1997). Bayesian network classifiers. Machine Learning. 29(2-3):131-163. * <p/> <!-- globalinfo-end --> *  <!-- technical-bibtex-start --> * BibTeX: * <pre> * &#64;article{Friedman1997, *    author = {N. Friedman and D. Geiger and M. Goldszmidt}, *    journal = {Machine Learning}, *    number = {2-3}, *    pages = {131-163}, *    title = {Bayesian network classifiers}, *    volume = {29}, *    year = {1997} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -mbc *  Applies a Markov Blanket correction to the network structure,  *  after a network structure is learned. This ensures that all  *  nodes in the network are part of the Markov blanket of the  *  classifier node.</pre> *  * <pre> -S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES] *  Score type (BAYES, BDeu, MDL, ENTROPY and AIC)</pre> *  <!-- options-end --> * * @author Remco Bouckaert * @version $Revision: 1.7 $ */public class TAN 	extends LocalScoreSearchAlgorithm	implements TechnicalInformationHandler {    	/** for serialization */  	static final long serialVersionUID = 965182127977228690L;  	/**  	 * Returns an instance of a TechnicalInformation object, containing   	 * detailed information about the technical background of this class,  	 * e.g., paper reference or book this class is based on.  	 *   	 * @return the technical information about this class  	 */  	public TechnicalInformation getTechnicalInformation() {  	  TechnicalInformation 	result;  	    	  result = new TechnicalInformation(Type.ARTICLE);  	  result.setValue(Field.AUTHOR, "N. Friedman and D. Geiger and M. Goldszmidt");  	  result.setValue(Field.YEAR, "1997");  	  result.setValue(Field.TITLE, "Bayesian network classifiers");  	  result.setValue(Field.JOURNAL, "Machine Learning");  	  result.setValue(Field.VOLUME, "29");  	  result.setValue(Field.NUMBER, "2-3");  	  result.setValue(Field.PAGES, "131-163");  	    	  return result;  	}	/**	 * buildStructure determines the network structure/graph of the network	 * using the maximimum weight spanning tree algorithm of Chow and Liu	 * 	 * @param bayesNet the network	 * @param instances the data to use	 * @throws Exception if something goes wrong	 */	public void buildStructure(BayesNet bayesNet, Instances instances) throws Exception {		m_bInitAsNaiveBayes = true;		m_nMaxNrOfParents = 2;		super.buildStructure(bayesNet, instances);		int      nNrOfAtts = instances.numAttributes();		// determine base scores		double[] fBaseScores = new double[instances.numAttributes()];		for (int iAttribute = 0; iAttribute < nNrOfAtts; iAttribute++) {		  fBaseScores[iAttribute] = calcNodeScore(iAttribute);		} 		//		// cache scores & whether adding an arc makes sense		double[][]  fScore = new double[nNrOfAtts][nNrOfAtts];		for (int iAttributeHead = 0; iAttributeHead < nNrOfAtts; iAttributeHead++) {			for (int iAttributeTail = 0; iAttributeTail < nNrOfAtts; iAttributeTail++) {				if (iAttributeHead != iAttributeTail) {					fScore[iAttributeHead][iAttributeTail] = calcScoreWithExtraParent(iAttributeHead, iAttributeTail);				}			} 		}				// TAN greedy search (not restricted by ordering like K2)		// 1. find strongest link		// 2. find remaining links by adding strongest link to already		//    connected nodes		// 3. assign direction to links		int nClassNode = instances.classIndex();		int [] link1 = new int [nNrOfAtts - 1];		int [] link2 = new int [nNrOfAtts - 1];		boolean [] linked = new boolean [nNrOfAtts];		// 1. find strongest link		int    nBestLinkNode1 = -1;		int    nBestLinkNode2 = -1;		double fBestDeltaScore = 0.0;		int iLinkNode1;		for (iLinkNode1 = 0; iLinkNode1 < nNrOfAtts; iLinkNode1++) {			if (iLinkNode1 != nClassNode) {			for (int iLinkNode2 = 0; iLinkNode2 < nNrOfAtts; iLinkNode2++) {				if ((iLinkNode1 != iLinkNode2) &&				    (iLinkNode2 != nClassNode) && (				    (nBestLinkNode1 == -1) || (fScore[iLinkNode1][iLinkNode2] - fBaseScores[iLinkNode1] > fBestDeltaScore)				)) {					fBestDeltaScore = fScore[iLinkNode1][iLinkNode2] - fBaseScores[iLinkNode1];					nBestLinkNode1 = iLinkNode2;					nBestLinkNode2 = iLinkNode1;			    } 			} 			}		}		link1[0] = nBestLinkNode1;		link2[0] = nBestLinkNode2;		linked[nBestLinkNode1] = true;		linked[nBestLinkNode2] = true;			// 2. find remaining links by adding strongest link to already		//    connected nodes		for (int iLink = 1; iLink < nNrOfAtts - 2; iLink++) {			nBestLinkNode1 = -1;			for (iLinkNode1 = 0; iLinkNode1 < nNrOfAtts; iLinkNode1++) {				if (iLinkNode1 != nClassNode) {				for (int iLinkNode2 = 0; iLinkNode2 < nNrOfAtts; iLinkNode2++) {					if ((iLinkNode1 != iLinkNode2) &&					    (iLinkNode2 != nClassNode) && 					(linked[iLinkNode1] || linked[iLinkNode2]) &&					(!linked[iLinkNode1] || !linked[iLinkNode2]) &&					(					(nBestLinkNode1 == -1) || (fScore[iLinkNode1][iLinkNode2] - fBaseScores[iLinkNode1] > fBestDeltaScore)					)) {						fBestDeltaScore = fScore[iLinkNode1][iLinkNode2] - fBaseScores[iLinkNode1];						nBestLinkNode1 = iLinkNode2;						nBestLinkNode2 = iLinkNode1;					} 				} 				}			}			link1[iLink] = nBestLinkNode1;			link2[iLink] = nBestLinkNode2;			linked[nBestLinkNode1] = true;			linked[nBestLinkNode2] = true;		}				// 3. assign direction to links		boolean [] hasParent = new boolean [nNrOfAtts];		for (int iLink = 0; iLink < nNrOfAtts - 2; iLink++) {			if (!hasParent[link1[iLink]]) {				bayesNet.getParentSet(link1[iLink]).addParent(link2[iLink], instances);				hasParent[link1[iLink]] = true;			} else {				if (hasParent[link2[iLink]]) {					throw new Exception("Bug condition found: too many arrows");				}				bayesNet.getParentSet(link2[iLink]).addParent(link1[iLink], instances);				hasParent[link2[iLink]] = true;			}		}	} // buildStructure	/**	 * Returns an enumeration describing the available options.	 *	 * @return an enumeration of all the available options.	 */	public Enumeration listOptions() {		return super.listOptions();	} // listOption	/**	 * Parses a given list of options. <p/>	 *	 <!-- options-start -->	 * Valid options are: <p/>	 * 	 * <pre> -mbc	 *  Applies a Markov Blanket correction to the network structure, 	 *  after a network structure is learned. This ensures that all 	 *  nodes in the network are part of the Markov blanket of the 	 *  classifier node.</pre>	 * 	 * <pre> -S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]	 *  Score type (BAYES, BDeu, MDL, ENTROPY and AIC)</pre>	 * 	 <!-- options-end -->	 * 	 * @param options the list of options as an array of strings	 * @throws Exception if an option is not supported	 */	public void setOptions(String[] options) throws Exception {		super.setOptions(options);	} // setOptions		/**	 * Gets the current settings of the Classifier.	 *	 * @return an array of strings suitable for passing to setOptions	 */	public String [] getOptions() {		return super.getOptions();	} // getOptions	/**	 * This will return a string describing the classifier.	 * @return The string.	 */	public String globalInfo() {		return 		    "This Bayes Network learning algorithm determines the maximum weight spanning tree "		  + " and returns a Naive Bayes network augmented with a tree.\n\n"		  + "For more information see:\n\n"		  + getTechnicalInformation().toString();	} // globalInfo	/**	 * Returns the revision string.	 * 	 * @return		the revision	 */	public String getRevision() {	  return RevisionUtils.extract("$Revision: 1.7 $");	}} // TAN

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -