⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 berlekamp.c

📁 RS译码器的C源代码,采用了BM算法
💻 C
字号:
/*********************************************************************** * Berlekamp-Peterson and Berlekamp-Massey Algorithms for error-location * * From Cain, Clark, "Error-Correction Coding For Digital Communications", pp. 205. * * This finds the coefficients of the error locator polynomial. * * The roots are then found by looking for the values of a^n * where evaluating the polynomial yields zero. * * Error correction is done using the error-evaluator equation  on pp 207. * * hqm@ai.mit.edu   Henry Minsky */#include <stdio.h>#include "ecc.h"/* The Error Locator Polynomial, also known as Lambda or Sigma. Lambda[0] == 1 */static int Lambda[MAXDEG];/* The Error Evaluator Polynomial */static int Omega[MAXDEG];/* local ANSI declarations */static int compute_discrepancy(int lambda[], int S[], int L, int n);static void init_gamma(int gamma[]);static void compute_modified_omega (void);static void mul_z_poly (int src[]);/* error locations found using Chien's search*/static int ErrorLocs[256];static int NErrors;/* erasure flags */static int ErasureLocs[256];static int NErasures;/* From  Cain, Clark, "Error-Correction Coding For Digital Communications", pp. 216. */voidModified_Berlekamp_Massey (void){	  int n, L, L2, k, d, i;  int psi[MAXDEG], psi2[MAXDEG], D[MAXDEG];  int gamma[MAXDEG];	  /* initialize Gamma, the erasure locator polynomial */  init_gamma(gamma);  /* initialize to z */  copy_poly(D, gamma);  mul_z_poly(D);	  copy_poly(psi, gamma);	  k = -1; L = NErasures;	  for (n = NErasures; n < NPAR; n++) {	    d = compute_discrepancy(psi, synBytes, L, n);		    if (d != 0) {		      /* psi2 = psi - d*D */      for (i = 0; i < MAXDEG; i++) psi2[i] = psi[i] ^ gmult(d, D[i]);				      if (L < (n-k)) {	L2 = n-k;	k = n-L;	/* D = scale_poly(ginv(d), psi); */	for (i = 0; i < MAXDEG; i++) D[i] = gmult(psi[i], ginv(d));	L = L2;      }			      /* psi = psi2 */      for (i = 0; i < MAXDEG; i++) psi[i] = psi2[i];    }		    mul_z_poly(D);  }	  for(i = 0; i < MAXDEG; i++) Lambda[i] = psi[i];  compute_modified_omega();	}/* given Psi (called Lambda in Modified_Berlekamp_Massey) and synBytes,   compute the combined erasure/error evaluator polynomial as    Psi*S mod z^4  */voidcompute_modified_omega (){  int i;  int product[MAXDEG*2];	  mult_polys(product, Lambda, synBytes);	  zero_poly(Omega);  for(i = 0; i < NPAR; i++) Omega[i] = product[i];}/* polynomial multiplication */voidmult_polys (int dst[], int p1[], int p2[]){  int i, j;  int tmp1[MAXDEG*2]; 	  for (i=0; i < (MAXDEG*2); i++) 
	  dst[i] = 0;	  for (i = 0; i < MAXDEG; i++) {    for(j=MAXDEG; j<(MAXDEG*2); j++) 
		tmp1[j]=0;		    /* scale tmp1 by p1[i] */    for(j=0; j<MAXDEG; j++) tmp1[j]=gmult(p2[j], p1[i]);    /* and mult (shift) tmp1 right by i */    for (j = (MAXDEG*2)-1; j >= i; j--) tmp1[j] = tmp1[j-i];    for (j = 0; j < i; j++) tmp1[j] = 0; 		    /* add into partial product */    for(j=0; j < (MAXDEG*2); j++) 
		dst[j] ^= tmp1[j];  }}	/* gamma = product (1-z*a^Ij) for erasure locs Ij */voidinit_gamma (int gamma[]){  int e, tmp[MAXDEG];	  zero_poly(gamma);  zero_poly(tmp);  gamma[0] = 1;	  for (e = 0; e < NErasures; e++) {    copy_poly(tmp, gamma);    scale_poly(gexp[ErasureLocs[e]], tmp);    mul_z_poly(tmp);    add_polys(gamma, tmp);  }}			void compute_next_omega (int d, int A[], int dst[], int src[]){  int i;  for ( i = 0; i < MAXDEG;  i++) {    dst[i] = src[i] ^ gmult(d, A[i]);  }}	intcompute_discrepancy (int lambda[], int S[], int L, int n){  int i, sum=0;	  for (i = 0; i <= L; i++)     sum ^= gmult(lambda[i], S[n-i]);  return (sum);}/********** polynomial arithmetic *******************/void add_polys (int dst[], int src[]) {  int i;  for (i = 0; i < MAXDEG; i++) dst[i] ^= src[i];}void copy_poly (int dst[], int src[]) {  int i;  for (i = 0; i < MAXDEG; i++) dst[i] = src[i];}void scale_poly (int k, int poly[]) {	  int i;  for (i = 0; i < MAXDEG; i++) poly[i] = gmult(k, poly[i]);}void zero_poly (int poly[]) {  int i;  for (i = 0; i < MAXDEG; i++) poly[i] = 0;}/* multiply by z, i.e., shift right by 1 */static void mul_z_poly (int src[]){  int i;  for (i = MAXDEG-1; i > 0; i--) src[i] = src[i-1];  src[0] = 0;}/* Finds all the roots of an error-locator polynomial with coefficients * Lambda[j] by evaluating Lambda at successive values of alpha.  *  * This can be tested with the decoder's equations case. */void Find_Roots (void){  int sum, r, k;	  NErrors = 0;    for (r = 1; r < 256; r++) {    sum = 0;    /* evaluate lambda at r */    for (k = 0; k < NPAR+1; k++) {      sum ^= gmult(gexp[(k*r)%255], Lambda[k]);    }    if (sum == 0)       { 	ErrorLocs[NErrors] = (255-r); NErrors++; 	if (DEBUG) fprintf(stderr, "Root found at r = %d, (255-r) = %d\n", r, (255-r));      }  }}/* Combined Erasure And Error Magnitude Computation  *  * Pass in the codeword, its size in bytes, as well as * an array of any known erasure locations, along the number * of these erasures. *  * Evaluate Omega(actually Psi)/Lambda' at the roots * alpha^(-i) for error locs i.  * * Returns 1 if everything ok, or 0 if an out-of-bounds error is found * */intcorrect_errors_erasures (unsigned char codeword[], 			 int csize,			 int nerasures,			 int erasures[]){  int r, i, j, err;  /* If you want to take advantage of erasure correction, be sure to     set NErasures and ErasureLocs[] with the locations of erasures.      */  NErasures = nerasures;  for (i = 0; i < NErasures; i++) ErasureLocs[i] = erasures[i];  Modified_Berlekamp_Massey();  Find_Roots();    if ((NErrors <= NPAR) && NErrors > 0) {     /* first check for illegal error locs */    for (r = 0; r < NErrors; r++) {      if (ErrorLocs[r] >= csize) {	if (DEBUG) fprintf(stderr, "Error loc i=%d outside of codeword length %d\n", i, csize);	return(0);      }    }    for (r = 0; r < NErrors; r++) {      int num, denom;      i = ErrorLocs[r];      /* evaluate Omega at alpha^(-i) */      num = 0;      for (j = 0; j < MAXDEG; j++) 	num ^= gmult(Omega[j], gexp[((255-i)*j)%255]);            /* evaluate Lambda' (derivative) at alpha^(-i) ; all odd powers disappear */      denom = 0;      for (j = 1; j < MAXDEG; j += 2) {	denom ^= gmult(Lambda[j], gexp[((255-i)*(j-1)) % 255]);      }            err = gmult(num, ginv(denom));      if (DEBUG) fprintf(stderr, "Error magnitude %#x at loc %d\n", err, csize-i);            codeword[csize-i-1] ^= err;    }    return(1);  }  else {    if (DEBUG && NErrors) fprintf(stderr, "Uncorrectable codeword\n");    return(0);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -