⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kalman.m

📁 The Kalman filter is an efficient recursive filter that estimates the state of a linear dynamic syst
💻 M
字号:
clear,clc% compute the background imageImzero = zeros(240,320,3);for i = 1:5Im{i} = double(imread(['DATA/',int2str(i),'.jpg']));Imzero = Im{i}+Imzero;endImback = Imzero/5;[MR,MC,Dim] = size(Imback);% Kalman filter initializationR=[[0.2845,0.0045]',[0.0045,0.0455]'];H=[[1,0]',[0,1]',[0,0]',[0,0]'];Q=0.01*eye(4);P = 100*eye(4);dt=1;A=[[1,0,0,0]',[0,1,0,0]',[dt,0,1,0]',[0,dt,0,1]'];g = 6; % pixels^2/time stepBu = [0,0,0,g]';kfinit=0;x=zeros(100,4);% loop over all imagesfor i = 1 : 60  % load image  Im = (imread(['DATA/',int2str(i), '.jpg']));   imshow(Im)  imshow(Im)  Imwork = double(Im);  %extract ball  [cc(i),cr(i),radius,flag] = extractball(Imwork,Imback,i);  if flag==0    continue  end  hold on    for c = -1*radius: radius/20 : 1*radius      r = sqrt(radius^2-c^2);      plot(cc(i)+c,cr(i)+r,'g.')      plot(cc(i)+c,cr(i)-r,'g.')    end  % Kalman updatei  if kfinit==0    xp = [MC/2,MR/2,0,0]'  else    xp=A*x(i-1,:)' + Bu  end  kfinit=1;  PP = A*P*A' + Q		% A-> state transition matrix, P-> estimatted error covariance, Q ->Process noise covariance  K = PP*H'*inv(H*PP*H'+R)	% H->Measurement Matrix, K->kalman Gain  x(i,:) = (xp + K*([cc(i),cr(i)]' - H*xp))';  x(i,:)  [cc(i),cr(i)]  P = (eye(4)-K*H)*PP  hold on    for c = -1*radius: radius/20 : 1*radius      r = sqrt(radius^2-c^2);      plot(x(i,1)+c,x(i,2)+r,'r.')      plot(x(i,1)+c,x(i,2)-r,'r.')    end      pause(0.3)end% show positions  figure  plot(cc,'r*')  hold on  plot(cr,'g*')%end%estimate image noise (R) from stationary ball  posn = [cc(55:60)',cr(55:60)'];  mp = mean(posn);  diffp = posn - ones(6,1)*mp;  Rnew = (diffp'*diffp)/5;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -