⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sdpvar.m

📁 国外专家做的求解LMI鲁棒控制的工具箱,可以相对高效的解决LMI问题
💻 M
📖 第 1 页 / 共 2 页
字号:
        sys.extra = [];
        % Find zero-variables
        constants = find(sys.lmi_variables==0);
        if ~isempty(constants);
            sys.lmi_variables(constants)=[];
            sys.basis(:,1) = sys.basis(:,1) + sum(sys.basis(:,1+constants),2);
            sys.basis(:,1+constants)=[];
        end
        if isempty(sys.lmi_variables)
            sys = full(reshape(sys.basis(:,1),sys.n,sys.m));
        else
            sys = class(sys,'sdpvar');
        end
        return
    case 7 % Fast version for internal use
        sys.basis = varargin{5};
        sys.lmi_variables=varargin{4};
        sys.n = varargin{1};
        sys.m = varargin{2};
        sys.typeflag = varargin{6};
        sys.savedata = [];
        sys.extra = varargin{7};
        % Find zero-variables
        constants = find(sys.lmi_variables==0);
        if ~isempty(constants);
            sys.lmi_variables(constants)=[];
            sys.basis(:,1) = sys.basis(:,1) + sum(sys.basis(:,1+constants),2);
            sys.basis(:,1+constants)=[];
        end
        if isempty(sys.lmi_variables)
            sys = full(reshape(sys.basis(:,1),sys.n,sys.m));
        else
            sys = class(sys,'sdpvar');
        end
        return

    otherwise
        error('Wrong number of arguments in sdpvar creation');
end

if isempty(n) | isempty(m)
    error('Size must be integer valued')
end;
if ~((abs((n-ceil(n)))+ abs((m-ceil(m))))==0)
    error('Size must be integer valued')
end

[mt,variabletype] = yalmip('monomtable');
lmi_variables = (1:nvar)+size(mt,1);

for blk = 1:length(n)
    switch matrix_type

        case 'full'
            basis{blk} = [spalloc(n(blk)*m(blk),1,0) speye(n(blk)*m(blk))];%speye(nvar)];

        case 'full complex'
            basis = [spalloc(n*m,1,0) speye(nvar/2) speye(nvar/2)*sqrt(-1)];

        case 'symm'
            if 0
                basis = spalloc(n^2,1+nvar,n^2);
                l = 2;
                an_empty = spalloc(n,n,2);
                for i=1:n
                    temp = an_empty;
                    temp(i,i)=1;
                    basis(:,l)=temp(:);
                    l = l+1;
                    for j=i+1:n,
                        temp = an_empty;
                        temp(i,j)=1;
                        temp(j,i)=1;
                        basis(:,l)=temp(:);
                        l = l+1;
                    end
                end
            else
                % Hrm...fast but completely f*d up
                indicies = reshape(1:n(blk)^2,n(blk),n(blk));
                t = tril(indicies);
                Y = (t+t')-diag(sparse(diag(t)));
                [uu,oo,pp] = unique(Y(:));
                basis{blk} = [spalloc(n(blk)^2,1,0) sparse(1:n(blk)^2,pp,1)];
            end



        case 'symm complex'
            basis = spalloc(n^2,1+nvar,2);
            l = 2;
            an_empty = spalloc(n,n,2);
            for i=1:n
                temp = an_empty;
                temp(i,i)=1;
                basis(:,l)=temp(:);
                l = l+1;
                for j=i+1:n,
                    temp = an_empty;
                    temp(i,j)=1;
                    temp(j,i)=1;
                    basis(:,l)=temp(:);
                    l = l+1;
                end
            end
            for i=1:n
                temp = an_empty;
                temp(i,i)=sqrt(-1);
                basis(:,l)=temp(:);
                l = l+1;
                for j=i+1:n,
                    temp = an_empty;
                    temp(i,j)=sqrt(-1);
                    temp(j,i)=sqrt(-1);
                    basis(:,l)=temp(:);
                    l = l+1;
                end
            end

        case 'herm complex'
            basis = spalloc(n^2,1+nvar,2);
            l = 2;
            an_empty = spalloc(n,n,2);
            for i=1:n
                temp = an_empty;
                temp(i,i)=1;
                basis(:,l)=temp(:);
                l = l+1;
                for j=i+1:n,
                    temp = an_empty;
                    temp(i,j)=1;
                    temp(j,i)=1;
                    basis(:,l)=temp(:);
                    l = l+1;
                end
            end
            for i=1:n
                for j=i+1:n,
                    temp = an_empty;
                    temp(i,j)=sqrt(-1);
                    temp(j,i)=-sqrt(-1);
                    basis(:,l)=temp(:);
                    l = l+1;
                end
            end

        case 'skew'
            basis = spalloc(n^2,1+nvar,2);
            l = 2;
            an_empty = spalloc(n,n,2);
            for i=1:n
                for j=i+1:n,
                    temp = an_empty;
                    temp(i,j)=1;
                    temp(j,i)=-1;
                    basis(:,l)=temp(:);
                    l = l+1;
                end
            end

        case 'skew complex'
            basis = spalloc(n^2,1+nvar,2);
            l = 2;
            an_empty = spalloc(n,n,2);
            for i=1:n
                for j=i+1:n,
                    temp = an_empty;
                    temp(i,j)=1;
                    temp(j,i)=-1;
                    basis(:,l)=temp(:);
                    l = l+1;
                end
            end
            for i=1:n
                for j=i+1:n,
                    temp = an_empty;
                    temp(i,j)=sqrt(-1);
                    temp(j,i)=-sqrt(-1);
                    basis(:,l)=temp(:);
                    l = l+1;
                end
            end

        case 'toep'
            basis = spalloc(n^2,1+nvar,2);
            an_empty = spalloc(n,1,1);
            for i=1:n,
                v = an_empty;
                v(i)=1;
                temp = sparse(toeplitz(v));
                basis(:,i+1) = temp(:);
            end

            % Notice, complex Toeplitz not Hermitian
        case 'toep complex'
            basis = spalloc(n^2,1+nvar,2);
            an_empty = spalloc(n,1,1);
            for i=1:n,
                v = an_empty;
                v(i)=1;
                temp = sparse(toeplitz(v));
                basis(:,i+1) = temp(:);
            end
            for i=1:n,
                v = an_empty;
                v(i)=sqrt(-1);
                temp = sparse(toeplitz(v));
                basis(:,n+i+1) = temp(:);
            end

        case 'hank'
            basis = spalloc(n^2,1+nvar,2);
            an_empty = spalloc(n,1,1);
            for i=1:n,
                v = an_empty;
                v(i)=1;
                temp = sparse(hankel(v));
                basis(:,i+1) = temp(:);
            end

        case 'hank complex'
            basis = spalloc(n^2,1+nvar,2);
            an_empty = spalloc(n,1,1);
            for i=1:n,
                v = an_empty;
                v(i)=1;
                temp = sparse(hankel(v));
                basis(:,i+1) = temp(:);
            end
            for i=1:n,
                v = an_empty;
                v(i)=sqrt(-1);
                temp = sparse(hankel(v));
                basis(:,n+i+1) = temp(:);
            end

        case 'rhankel'
            basis = spalloc(n^2,1+nvar,2);
            an_empty = spalloc(2*n-1,1,1);
            for i=1:nvar,
                v = an_empty;
                v(i)=1;
                temp = sparse(hankel(v(1:n),[v(n);v(n+1:2*n-1)]));
                basis(:,i+1) = temp(:);
            end

        case 'rhankel complex'
            basis = spalloc(n^2,1+nvar,2);
            an_empty = spalloc(2*n-1,1,1);
            for i=1:nvar/2,
                v = an_empty;
                v(i)=1;
                temp = sparse(hankel(v(1:n),[v(n);v(n+1:2*n-1)]));
                basis(:,i+1) = temp(:);
            end
            for i=1:nvar/2,
                v = an_empty;
                v(i)=sqrt(-1);
                temp = sparse(hankel(v(1:n),[v(n);v(n+1:2*n-1)]));
                basis(:,nvar/2+i+1) = temp(:);
            end

        otherwise
            error('Bug! Report')
    end

end

% Update monomtable and pre-calculated variable type
n_mt = size(mt,1);
m_mt = size(mt,2);
if min(lmi_variables)>m_mt % New variables
    if size(mt,1)~=size(mt,2)
        mt(size(mt,1),size(mt,1))=0;
    end
    fill=spalloc(size(mt,1),length(lmi_variables),0);
    mt=[mt fill;fill' speye(length(lmi_variables))];
else
    mt(lmi_variables,lmi_variables) = speye(length(lmi_variables));
end
variabletype(1,size(mt,1)) = 0;
yalmip('setmonomtable',mt,variabletype);

% Create an object
if isa(basis,'cell')
    top = 1;
    for blk = 1:length(n)
        sys{blk}.basis=basis{blk};
        nn = size(sys{blk}.basis,2)-1;
        sys{blk}.lmi_variables = lmi_variables(top:top+nn-1);
        top = top + nn;
        sys{blk}.n = n(blk);
        sys{blk}.m = m(blk);
        sys{blk}.typeflag = 0;
        sys{blk}.savedata = [];
        sys{blk}.extra = [];
        sys{blk} = class(sys{blk},'sdpvar');
    end
    if length(n)==1
        sys = sys{1};
    end
else
    sys.basis=basis;
    sys.lmi_variables = lmi_variables;
    sys.n = n;
    sys.m = m;
    sys.typeflag = 0;
    sys.savedata = [];
    sys.extra = [];
    sys = class(sys,'sdpvar');
end

% Typeflags
% 0 Standard variable
% 1 Inequality (LMI)
% 2 Inequality (element)
% 3 Equality
% 4 Cone
% 5 norm object (osbolete)
% 6 logdet object
% 8 KYP object

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -