📄 monomialreduction.m
字号:
function exponent_m = monomialreduction(exponent_m,exponent_p,options,csclasses)
%MONOMIALREDUCTION Internal function for monomial reduction in SOS programs
% Author Johan L鰂berg
% $Id: monomialreduction.m,v 1.20 2005/05/27 16:19:13 joloef Exp $
% **********************************************
% TRIVIAL REDUCTIONS (stupid initial generation)
% **********************************************
mindegrees = min(exponent_p,[],1);
maxdegrees = max(exponent_p,[],1);
mindeg = min(sum(exponent_p,2));
maxdeg = max(sum(exponent_p,2));
if size(exponent_m{1},2)==0 % Stupid case : set(sos(parametric))
if options.verbose>0;disp('Initially 1 monomials in R^0');end
else
if options.verbose>0;disp(['Initially ' num2str(sum(cellfun('prodofsize',exponent_m)/size(exponent_m{1},2))) ' monomials in R^' num2str(size(exponent_p,2))]);end
end
for i = 1:length(csclasses)
t = cputime;
% THE CODE BELOW IS MESSY TO HANDLE SEVERAL BUGS IN MATLAB
%too_large_term = any(exponent_m-repmat(maxdegrees/2,size(exponent_m,1),1)>0,2);% DOES NOT HANDLE ODD
% POLYNIMIALS CORRECTLY
a1 = full(ceil((1+maxdegrees)/2)); % 6.5.1 in linux freaks on sparse stuff...
if isempty(a1)
a1 = zeros(size(maxdegrees));
end
a2 = full(size(exponent_m{i},1));
too_large_term = any(exponent_m{i}-repmat(a1,a2,1)>0,2);
%too_small_term = any(exponent_m-repmat(mindegrees/2,size(exponent_m,1),1)<0,2);
a1 = full(floor(mindegrees/2));
if isempty(a1)
a1 = zeros(size(mindegrees));
end
a2 = full(size(exponent_m{i},1));
too_small_term = any(exponent_m{i}-repmat(a1,a2,1)<0,2);%x^2+xz
%too_large_sum = any(sum(exponent_m,2)-maxdeg/2>0,2); % DOES NOT HANDLE ODD
% POLYNIMIALS CORRECTLY
too_large_sum = any(sum(exponent_m{i},2)-ceil((1+maxdeg)/2)>0,2);
too_small_sum = any(sum(exponent_m{i},2)-mindeg/2<0,2);
keep = setdiff1D((1:size(exponent_m{i},1)),find(too_large_term | too_small_term | too_large_sum | too_small_sum));
exponent_m{i} = exponent_m{i}(keep,:);
t = cputime-t;
end
if options.verbose>1;disp(['Removing large/small............Keeping ' num2str(sum(cellfun('prodofsize',exponent_m)/size(exponent_m{1},2))) ' monomials (' num2str(t) 'sec)']);end
% ************************************************
% Homogenuous?
% ************************************************
if all(sum(exponent_p,2)==sum(exponent_p(1,:)))
for i = 1:length(csclasses)
j = csclasses{i};
t = cputime;
exponent_m{i} = exponent_m{i}(sum(exponent_m{i},2)==sum(exponent_p(1,:))/2,:);
t = cputime-t;
end
if options.verbose>1;disp(['Homogenuous form!...............Keeping ' num2str(sum(cellfun('prodofsize',exponent_m)/size(exponent_m{1},2))) ' monomials (' num2str(t) 'sec)']);end
end
% ************************************************
% DIAGONAL CONSISTENCY : MONOMIAL ONLY IN
% DIAGONAL, CONSTRAINED TO BE ZER0, CAN BE REMOVED
% ************************************************
if (options.sos.inconsistent==1) & ~options.sos.csp
t = cputime;
keep = consistent(exponent_m{1},exponent_p);
exponent_m{1} = exponent_m{1}(keep,:);
t = cputime-t;
if options.verbose>0;disp(['Diagonal inconsistensies........Keeping ' num2str(size(exponent_m{1},1)) ' monomials (' num2str(t) 'sec)']);end
end
% ***********************************************************
% NEWTON POLYTOPE CHECK
% ***********************************************************
if options.sos.newton
t = cputime;
for j = 1:length(csclasses)
try
% Basic idea : Try to find separating hyperplane between Newton polytope and candidate,
% for all candidates.
% Pro : Numerical stability, polynomial (does NOT calculate H-representation of Newton polytope)
% Con : Slightly slower than explicit convex hull calculation in most cases.
%
% For speed, assuming GLPKLMEX or CDDMEX available (full-fledged YALMIP too slow)
no_lp_solved = 0;
if 1
keep = ismember(exponent_m{j}*2,exponent_p,'rows');
dontkeep = 0*keep;
ii = 0;
for i = 1:length(keep)
if ~keep(i) & ~dontkeep(i)
q = exponent_m{j}(i,:)'*2;
IN=struct('obj',full([-q' 1]),'A',full([exponent_p -ones(size(exponent_p,1),1);q' -1]),'B',[zeros(size(exponent_p,1),1);1]);
OUT=cddmex('solve_lp',IN);
no_lp_solved = no_lp_solved + 1;
ii = ii + 1;
if OUT.how==5
% BUG in CDDMEX
warning('Resorting to YALMIP to solve LP (cddmex gave strange result). This can be slow');
xx = sdpvar(length(IN.obj),1);
sol = solvesdp(set(IN.A*xx < IN.B),IN.obj*xx,sdpsettings('verbose',0));
no_lp_solved = no_lp_solved + 1;
OUT.how = sol.problem==0;
OUT.objlp = double(IN.obj*xx);
OUT.xopt = double(xx);
end
if (OUT.how == 1 & OUT.objlp<0)
a = OUT.xopt(1:end-1);
b = OUT.xopt(end);
u = find(a'*2*exponent_m{j}' - b > sqrt(eps));
dontkeep(u) = 1;
end
end
if keep(i)
q = exponent_m{j}(i,:)'*2;
end
end
keep = find(~dontkeep);
else
V1=struct('V',full(exponent_p));
uu = cddmex('hull',V1);
A = uu.A;
b = uu.B;
keep = zeros(1,length(exponent_m{j}));
for i = 1:length(exponent_m{j})
if all(A*(2*exponent_m{j}(i,:))'<=b)
keep(i)=1;
else
keep(i)=0;
end
end
keep = find(keep);
end
catch
try
keep = ismember(exponent_m{j}*2,exponent_p,'rows');
dontkeep = 0*keep;
ops.msglev = 0;
CTYPE = repmat('U',full(size(exponent_p,1)+1),1);
VTYPE = repmat('C',full(size(exponent_p,2)+1),1);
for i = 1:length(keep)
if ~keep(i) & ~dontkeep(i)
q = exponent_m{j}(i,:)'*2;
A = [exponent_p -ones(size(exponent_p,1),1);q' -1];
b = [zeros(size(exponent_p,1),1);1];
c = [-q(:);1];
[xopt,FMIN,STATUS]=glpkmex(1,c,A,b,CTYPE,[],[],VTYPE,ops);
no_lp_solved = no_lp_solved + 1;
if (STATUS == 180) & (FMIN<0)
a = xopt(1:end-1);
b = xopt(end);
u = find(a'*2*exponent_m{j}' - b > sqrt(eps));
dontkeep(u) = 1;
end
end
if keep(i)
q = exponent_m{j}(i,:)'*2;
end
end
keep = find(~dontkeep);
catch
if options.verbose>0;warning('Resorting to LINPROG to solve LP (tried glpk and cdd but failed). This can be slow...');end
try
keep = ismember(exponent_m{j}*2,exponent_p,'rows');
dontkeep = 0*keep;
ops = optimset('display','off');
for i = 1:length(keep)
if ~keep(i) & ~dontkeep(i)
q = exponent_m{j}(i,:)'*2;
A = [exponent_p -ones(size(exponent_p,1),1);q' -1];
b = [zeros(size(exponent_p,1),1);1];
c = [-q(:);1];
[xopt,FMIN,STATUS] = linprog(c,A,b,[],[],[],[],[],ops);ii = ii + 1;
no_lp_solved = no_lp_solved + 1;
if (STATUS > 0) & (FMIN<0)
a = xopt(1:end-1);
b = xopt(end);
u = find(a'*2*exponent_m{j}' - b > sqrt(eps));
dontkeep(u) = 1;
end
end
if keep(i)
q = exponent_m{j}(i,:)'*2;
end
end
keep = find(~dontkeep);
catch
disp(' ');
disp('Could not find cddmex, glpkmex or linprog (or it failed). Switching to crappy convhull for Newton polytope...');
disp(' ');
keep = newtonpolytope(exponent_m{j}*2,exponent_p);
end
end
end
changed = length(keep)<size(exponent_m{j},1);
exponent_m{j} = exponent_m{j}(keep,:);
end
t = cputime-t;
%if options.verbose>1 | (options.verbose>0 & changed);disp(['Newton polytope.................Keeping ' num2str(size(exponent_m{j},1)) ' monomials (' num2str(t) 'sec)']);end
if options.verbose>1 | (options.verbose>0 & 1+changed);
info = ['Newton polytope (' num2str(no_lp_solved) ' LPs)'];
info = [info repmat('.',1,32-length(info))];
disp([info 'Keeping ' num2str(size(exponent_m{j},1)) ' monomials (' num2str(t) 'sec)']);
end
end
if (options.sos.inconsistent==2) & ~options.sos.csp
t = cputime;
keep = consistent(exponent_m{1},exponent_p);
exponent_m{1} = exponent_m{1}(keep,:);
t = cputime-t;
if options.verbose>1;disp(['Diagonal inconsistensies........Keeping ' num2str(size(exponent_m,1)) ' monomials (' num2str(t) 'sec)']);end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -