📄 compileinterfacedata.m
字号:
% ******************************************
% MAXDET using geometric mean construction
if ~isempty(P) & solver.objective.maxdet==0
t = sdpvar(1,1);
if isequal(P,sdpvar(F(end)))
F = F(1:end-1);
end
F = F + detset(t,P);
if isempty(h)
h = -t;
else
h = h-t;
% Warn about logdet -> det^1/m
if options.verbose>0 & options.warning>0
disp(' ')
disp('Objective c''x-logdet(P) has been changed to c''x-det(P)^(1/(2^ceil(log2(length(X))))).')
disp('See the MAXDET section in the manual for details.')
disp(' ')
end
end
end
% Relax binary valiables
if ~isempty(binary_variables) & (solver.constraint.binary==0)
x_bin = recover(binary_variables(ismember(binary_variables,unique([getvariables(h) getvariables(F)]))));
F = F + set(x_bin<1)+set(x_bin>0);
integer_variables = union(binary_variables,integer_variables);
binary_variables = [];
end
% Model quadratics using SOCP
convertQuadraticObjective = ~strcmp(lower(solver.tag),'pennlp-standard');
convertQuadraticObjective = convertQuadraticObjective & ~strcmp(lower(solver.tag),'bmibnb');
convertQuadraticObjective = convertQuadraticObjective & ( ~(options.relax==1 | options.relax==3) &(~isempty(quad_info) & solver.objective.quadratic.convex==0 | (~isempty(quad_info) & strcmp(solver.tag,'bnb') & localsolver.objective.quadratic.convex==0)));
%if convertQuadraticObjective &
if strcmp(lower(solver.tag),'bnb') & ~isempty(quad_info)
if solver.lower.objective.quadratic.convex==0
convertQuadraticObjective = 1;
end
end
if convertQuadraticObjective
t = sdpvar(1,1);
x = quad_info.x;
R = quad_info.R;
if ~isempty(R)
c = quad_info.c;
f = quad_info.f;
F = F + lmi(cone([2*R*x;1-(t-c'*x-f)],1+t-c'*x-f));
h = t;
end
quad_info = [];
end
if solver.constraint.inequalities.rotatedsecondordercone == 0
[F,changed] = convertlorentz(F);
if changed
options.saveduals = 0; % We cannot calculate duals since we change the problem
end
end
% Whoa, horrible tests to find out when to convert SOCP to SDP
% This should not be done if :
% 1. Problem is actually a QCQP and solver supports this
% 2. Problem is integer, local solver supports SOCC
% 3. Solver supports SOCC
if ~((solver.constraint.inequalities.elementwise.quadratic.convex == 1) & socp_are_really_qc)
if ~(strcmp(solver.tag,'bnb') & socp_are_really_qc & localsolver.constraint.inequalities.elementwise.quadratic.convex==1 )
if ((solver.constraint.inequalities.secondordercone == 0) | (strcmpi(solver.tag,'bnb') & localsolver.constraint.inequalities.secondordercone==0))
[F,changed] = convertsocp(F);
if changed
options.saveduals = 0; % We cannot calculate duals since we change the problem
end
end
end
end
if ((solver.complex==0) & ProblemClass.complex) | ((strcmp(solver.tag,'bnb') & localsolver.complex==0) & ProblemClass.complex)
showprogress('Converting to real constraints',options.showprogress)
F = imag2reallmi(F);
options.saveduals = 0; % We cannot calculate duals since we change the problem
end
% **********************************************
% CREATE OBJECTIVE FUNCTION c'*x+x'*Q*x
% **********************************************
if isequal(lower(solver.tag),'pennlp-standard')
allx = recover(uniquestripped([depends(F) depends(h)]))
dh = jacobian(h,allx);
ddh = jacobian(dh(:),allx);
allconstraints = [];
for i = 1:length(F)
Fi = sdpvar(F(i));
allconstraints = [allconstraints;Fi(:)];
end
dg = jacobian(allconstraints(:),allx);
ddg = jacobian(dg(:),allx);
gradientsHessians = [dh(:);ddh(:);dg(:);ddg(:)];
else
gradientsHessians = [];
end
% **********************************************
% CREATE OBJECTIVE FUNCTION c'*x+x'*Q*x
% **********************************************
showprogress('Processing objective h(x)',options.showprogress);
try
if strcmp(lower(solver.tag),'bmibnb') | strcmp(lower(solver.tag),'pennlp-standard')
tempoptions = options;
tempoptions.relax = 1;
[c,Q,f,onlyfeasible]=createobjective(h,G,tempoptions,quad_info);
else
[c,Q,f,onlyfeasible]=createobjective(h,G,options,quad_info);
end
catch
error(lasterr)
end
% **********************************************
% Convert {F(x),G(x)} to internal formats
% **********************************************
showprogress('Processing F(x)',options.showprogress);
[F_struc,K,KCut] = lmi2sedumistruct(F,gradientsHessians);
K.m = length(sdpvar(G));
if ~isempty(replacements)
n_orig_eq = K.f-length(F_new);
newcon = setdiff(1:K.f,1:n_orig_eq);
replaceinthese = setdiff(1:size(F_struc,1),newcon);
for i = 1:size(replacements,1)
c(replacements(i,2)) = c(replacements(i,1));
c(replacements(i,1)) = 0;
F_struc(replaceinthese,1+replacements(i,2)) = F_struc(replaceinthese,1+replacements(i,1));
F_struc(replaceinthese,1+replacements(i,1)) = 0;
end
end
% **********************************************
% SOME HORRIBLE CODE TO DETERMINE USED VARIABLES
% **********************************************
% Which sdpvar variables are actually in the problem
used_variables_LMI = find(any(F_struc(:,2:end),1));
used_variables_obj = find(any(c',1) | any(Q));
used_variables = uniquestripped([used_variables_LMI used_variables_obj]);
% The problem is that linear terms might be missing
monomtable = yalmip('monomtable');
if (options.relax==1)|(options.relax==3)
monomtable = [];
nonlinearvariables = [];
else
nonlinearvariables = find(~(sum(monomtable~=0,2)==1 & sum(monomtable,2)==1));
end
linearvariables = setdiff(used_variables,nonlinearvariables);
needednonlinear = nonlinearvariables(ismember(nonlinearvariables,used_variables));
%linearinnonlinear = find(any(full(monomtable(needednonlinear,:)),1));
linearinnonlinear = find(sum(abs(monomtable(needednonlinear,:)),1));
missinglinear = setdiff(linearinnonlinear(:),linearvariables);
used_variables = unique(sort([used_variables(:);missinglinear(:)])');
% Check for unbounded variables
if 0%isempty(sqrList) WHY did I remove these
unbounded_variables = setdiff(used_variables_obj,used_variables_LMI);
if ~isempty(unbounded_variables)
% Remove unbounded variable from problem
used_variables = setdiff(used_variables,unbounded_variables);
end
end
% ****************************************
% REMOVE UNNECESSARY VARIABLES FROM PROBLEM
% ****************************************
if length(used_variables)<yalmip('nvars')
c = c(used_variables);
Q = Q(:,used_variables);Q = Q(used_variables,:);
if ~isempty(F_struc)
F_struc = sparse(F_struc(:,[1 1+used_variables]));
end
end
% ****************************************
% Map variables and constraints in low-rank definition to local stuff
% ****************************************
if ~isempty(lowrankdetails)
% Identifiers of the SDP constraints
lmiid = getlmiid(F);
%lmiid = find(ismember(lmiid(is(F,'sdp'),);
for i = 1:length(lowrankdetails)
lowrankdetails{i}.id = find(ismember(lmiid,lowrankdetails{i}.id));
if ~isempty(lowrankdetails{i}.variables)
lowrankdetails{i}.variables = find(ismember(used_variables,lowrankdetails{i}.variables));
end
end
end
% ****************************************
% SPECIAL VARIABLES
% ****************************************
if (options.relax==1) | (options.relax==3)
nonlins = [];
end
if (options.relax) | (options.relax==2)
integer_variables = [];
binary_variables = [];
else
integer_variables = find(ismember(used_variables,integer_variables));
binary_variables = find(ismember(used_variables,binary_variables));
end
parametric_variables = find(ismember(used_variables,parametric_variables));
extended_variables = find(ismember(used_variables,yalmip('extvariables')));
if (K.f>0)
% If user explicitely says remove, or user says nothing but solverdefinitions does
% FIX : CHECK FOR NONLINEARS
if ((options.removeequalities==1 | options.removeequalities==2) & isempty(intersect(used_variables,nonlinearvariables))) | ((options.removeequalities==0) & (solver.constraint.equalities.linear==-1))
showprogress('Solving equalities',options.showprogress);
[x_equ,H,A_equ,b_equ] = solveequalities(F_struc,K,options.removeequalities==1);
% Exit if no consistent solution exist
if (norm(A_equ*x_equ-b_equ,'inf')>1e-5)%sqrt(eps)*size(A_equ,2))
diagnostic.solvertime = 0;
diagnostic.info = yalmiperror(1,'YALMIP');
diagnostic.problem = 1;
solution = diagnostic;
solution.variables = used_variables(:);
solution.optvar = x_equ;
% And we are done! Save the result
sdpvar('setSolution',solution);
return
end
% We dont need the rows for equalities anymore
F_struc = F_struc(K.f+1:end,:);
K.f = 0;
Fold = F;
[nlmi neq]=size(F);
F = lmi;
for i = 1:nlmi+neq
if ~is(Fold(i),'equality')
F = F + Fold(i);
end
end
% No variables left!
if size(H,2)==0
diagnostic.solvertime = 0;
diagnostic.info = yalmiperror(0,'YALMIP');
diagnostic.problem = 0;
solution = diagnostic;
solution.variables = used_variables(:);
solution.optvar = x_equ;
% And we are done! Save the result
% Note, no dual is saved
sdpvar('setSolution',solution);
p = checkset(F);
if any(p<1e-5)
diagnostic.info = yalmiperror(1,'YALMIP');
diagnostic.problem = 1;
end
return
end
showprogress('Converting problem to new basis',options.showprogress)
% objective in new basis
c = H'*c;
Q = H'*Q*H;
% LMI in new basis
F_struc = [F_struc*[1;x_equ] F_struc(:,2:end)*H];
else
% Solver does not support equality constraints
% and they hould be removed using double-sided
% or user just want to remove them
if (solver.constraint.equalities.linear==0 | options.removeequalities==-1)
% Add equalities
F_struc = [-F_struc(1:1:K.f,:);F_struc];
K.l = K.l+K.f*2;
% Keep this in mind...
K.fold = K.f;
K.f = 0;
end
% For simpliciy we introduce a dummy coordinate change
x_equ = 0;
H = 1;
end
else
x_equ = 0;
H = 1;
end
% **************************************************
% INITIAL SOLUTION
% **************************************************
x0 = [];
if options.usex0
if options.relax
x0_used = relaxdouble(recover(used_variables));
else
x0_used = double(recover(used_variables));
end
x0 = zeros(sdpvar('nvars'),1);
x0(used_variables) = x0_used(:);
x0(isnan(x0))=0;
end
if ~isempty(x0)
% Get a coordinate in the reduced space
x0 = H\(x0(used_variables)-x_equ);
end
solveroutput = [];
% Monomial table for nonlinear variables
% FIX : Why here!!! mt handled above also
mt = yalmip('monomtable');
if size(mt,1)>size(mt,2)
mt(size(mt,1),size(mt,1)) = 0;
end
% In local variables
mt = mt(used_variables,used_variables);
if (options.relax)|(options.relax==3)
mt = eye(length(used_variables));
end
% Lower and upper bounds
lub = yalmip('getbounds',used_variables);
lb = lub(:,1);
ub = lub(:,2);
if 1%all(isinf([lb;ub]))
lb = [];
ub = [];
end
% ********************************
% GENERAL DATA EXCHANGE WITH SOLVER
% ********************************
interfacedata.F_struc = F_struc;
interfacedata.c = c;
interfacedata.Q = Q;
interfacedata.f = f;
interfacedata.K = K;
interfacedata.KCut = KCut;
interfacedata.integer_variables = integer_variables;
interfacedata.binary_variables = binary_variables;
interfacedata.parametric_variables = parametric_variables;
interfacedata.extended_variables = extended_variables;
interfacedata.options = options;
interfacedata.solver = solver;
interfacedata.monomtable = mt;
interfacedata.x0 = x0;
interfacedata.solver = solver;
interfacedata.lb = lb;
interfacedata.ub = lb;
interfacedata.lowrankdetails = lowrankdetails;
interfacedata.solver = solver;
interfacedata.problemclass = ProblemClass;
interfacedata.getsolvertime = 1;
% ********************************
% GENERAL DATA EXCANGE SOLUTION
% ********************************
recoverdata.H = H;
recoverdata.x_equ = x_equ;
recoverdata.used_variables = used_variables;
function yesno = warningon
s = warning;
if isa(s,'char')
yesno = isequal(s,'on');
else
yesno = isequal(s(1).state,'on');
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -