📄 solvemoment.m
字号:
function [sol,x_extract,momentsstructure,sosout] = solvemoment(F,obj,options,k)
%SOLVEMOMENT Application of Lasserre's moment-method for polynomial programming
%
% min h(x)
% subject to
% F(x) > 0,
%
% [DIAGNOSTIC,X,MOMENT] = SOLVEMOMENT(F,h,options,k)
%
% diagnostic : Struct with diagnostics
% x : Extracted global solutions
% moment : Structure with various variables needed to recover solution
% sos : SOS decomposition {max a s.t h-a = p0+sum(pi*Fi), pi = vi'*Qi*vi}
%
% Input
% F : SET object with polynomial inequalities and equalities.
% h : SDPVAR object describing the polynomial h(x).
% options : solver options from SDPSETTINGS.
% k : Level of relaxation. If empty or not given, smallest possible applied.
%
% The behaviour of the moment relaxation can be controlled
% using the fields 'moment' in SDPSETTINGS
%
% moment.refine : Perform #refine Newton iterations in extracation of global solutions.
% This can improve numerical accuracy of extracted solutions in some cases.
% moment.extractrank : Try (forcefully) to extract #extractrank global solutions.
% This feature should normally not be used and is then set to 0.
% moment.rceftol : Tolerance during Gaussian elimination used in extraction of global solutions.
% Default is -1 which means heuristic choice by YALMIP.
%
% Some of the fields are only used when the moment relaxation is called
% indirectly from SOLVESDP.
%
% moment.solver : SDP solver used in moment relxation. Default ''
% moment.order : Order of relxation. Default [] meaning lowest possible.
%
% See also SDPVAR, SET, SDPSETTINGS, SOLVESDP
% Author Johan L鰂berg
% $Id: solvemoment.m,v 1.28 2005/07/19 13:57:40 joloef Exp $
if nargin ==0
help solvemoment
return
end
if nargin<2
obj=[];
end
if (nargin>=3) & (isa(options,'double') & ~isempty(options))
help solvemoment
error('Order of arguments have changed in solvemoment. Update code');
end
if nargin<3 | (isempty(options))
options = sdpsettings;
end
% Relaxation-order given?
if nargin<4
k = [];
end
% Check for wrong syntax
if ~isempty(F) & ~isa(F,'lmi')
error('First argument should be a SET object')
end
% Get all element-wise constraints, and put them in a vector
% Furthermore, gather the other constraints and place them
% in a new LMI object.
% Additionally, we find out the variables on which we perform
% the relaxation.
vecConstraints = [];
sdpConstraints = [];
isinequality = [];
xvars = [];
Fnew = set([]);
for i = 1:length(F)
if is(F(i),'elementwise')
X = sdpvar(F(i));
vecConstraints = [vecConstraints;X(:)];
isinequality = [isinequality ones(1,length(X))];
xvars = [xvars depends(X(:))];
elseif is(F(i),'equality')
X = sdpvar(F(i));
vecConstraints = [vecConstraints;X(:)];
isinequality = [isinequality zeros(1,length(X))];
xvars = [xvars depends(X(:))];
elseif is(F(i),'sdp')
sdpConstraints{end+1} = sdpvar(F(i));
xvars = [xvars depends(F(i))];
else
Fnew = Fnew+F(i); % Should only be SOCP constraints
end
end
% Recover the involved variables
x = recover(unique([depends(obj) xvars]));
n = length(x);
% Check degrees of constraints
deg = [];
for i = 1:length(vecConstraints)
deg(end+1) = degree(vecConstraints(i));
end
for i = 1:length(sdpConstraints)
deg(end+1) = degree(sdpConstraints{i});
end
if isempty(deg)
deg = 0;
end
% Perform Schur complements if possible to reduce the
% dimension of the SDP constraints
% for i = 1:length(sdpConstraints)
% Fi = sdpConstraints{i};
% j = 1;
% while j<=length(Fi) & (length(Fi)>1)
% if isa(Fi(j,j),'double')
% ks = 1:length(Fi);ks(j)=[];
% v = Fi(ks,j);
% vv = v*v'/Fi(j,j);
% if degree(vv)<=max(deg)
% Fi = Fi(ks,ks) - vv;
% end
% else
% j = j+1;
% end
% end
% end
% Create lowest possible relaxation if k=[]
% k_min = floor((max(degree(obj)+1,max(deg))+1)/2); % why did I use this?
d = ceil((max(degree(obj),max(deg)))/2);
k_min = d;
if isempty(k)
k = k_min;
else
if k<k_min
error('Higher order relaxation needed')
end
end
% Generate monomials of order k
u{k} = monolist(x,k);
% Largest moment matrix. NOTE SHIFT M{k+1} = M_k.
M{k+1}=u{k}*u{k}';
% Moment matrices easily generated with this trick
% The matrices will NOT be rank-1 since the products
% generate the relaxed variables
% rt = [];
% MMM = M{k+1};
% setsdpvar(recover(getvariables(MMM)),0+0*getvariables(MMM)')
% Fb = set([]);
% if 1
% involved = [];
% any_remove = 0;
% removed = [];
%
% vars = getvariables(M{k+1});
% for i = 1:length(vars)
% B = getbasematrix(M{k+1},vars(i));
% v = eig(reshape(B,length(M{k+1}),length(M{k+1})));
% if all(v>=0)
% v
% end
% end
%
% while any_remove == 1
% i = 1;
% any_remove = 0;
% bajs = [];
% while i<=length(M{k+1})
% Mij = M{k+1}(i,i);
% if isa(Mij,'sdpvar')
% B = getbasematrix(M{k+1},getvariables(Mij));
% if nnz(B) == 1
% if isempty(intersect(getvariables(Mij),getvariables(obj)))
% if isempty(intersect(getvariables(Mij),involved))
%
% Fb = Fb + set(M{k+1}(i,i) == 0);
% any_remove = 1;
% bajs = [bajs i];
% end
% end
% end
% end
% i = i+1;
% end
% end
%
% if 1
% for sd = 1:1:2
% [exponent_p,p_base] = getexponentbase(obj+sum(sum(rt)),recover(depends(obj)));
% Msparsity = zeros(size(M{k+1},1));
% vars = recover(depends(obj));
% for i = 1:size(M{k+1},1)
% for j = i:size(M{k+1},1)
% [exponent_Mij,Mij_base] = getexponentbase(M{k+1}(i,j),vars);
% if ~isempty(findrows(exponent_p,exponent_Mij))
% Msparsity(i,j) = 1;
% Msparsity(j,i) = 1;
% end
% end
% end
%
% Mblocked = [];
% [p,q,r,s] = dmperm(Msparsity+eye(length(Msparsity)));
% Mrs = M{k+1}(p,p);
% r(2:14)=[];
% MM = ones(length(M{k+1}));
% blocks = zeros(1,length(M{k+1}));
% for i = 1:length(r)-1
% blocks(r(i+1)-r(i)) = blocks(r(i+1)-r(i)) + 1;
% MM = blkdiag(MM,ones(r(i+1)-r(i)));
% Mblocked = blkdiag(Mblocked,Mrs(r(i):(r(i+1)-1),r(i):(r(i+1)-1)));
% end
% string = 'Blocks : ';
% for i = 1:length(blocks)
% if blocks(i)>0
% string = [string num2str(i) 'x' num2str(i) '(' num2str(blocks(i)) ') ' ];
% end
% end
% disp(string)
% rt = Mblocked(:);
% end
% M{k+1} = Mblocked;
% end
% end
% ... and lower degree localization matrices
M{1} = 1;
for i = 1:1:k-1;
n_i = factorial(n+k-i)/(factorial(n)*factorial(k-i));
M{k-i+1} = M{k+1}(1:n_i,1:n_i);
end
% Lasserres relaxation (Lasserre, SIAM J. OPTIM, 11(3) 796-817)
Fmoments = set(M{k+1}>0);
for i = 1:length(vecConstraints)
v_k = floor((degree(vecConstraints(i))+1)/2);
Localizer = vecConstraints(i)*M{k-v_k+1};
if isinequality(i)
Fmoments = Fmoments+set(Localizer>0);
else
indicies = find(triu(ones(length(Localizer))));
Fmoments = Fmoments+set(Localizer(indicies)==0);
end
end
for i = 1:length(sdpConstraints)
v_k = floor((degree(sdpConstraints{i})+1)/2);
Fmoments = Fmoments+set(kron(M{k-v_k+1},sdpConstraints{i})>0);
end
% Add them all
Fnew = Fnew + unblkdiag(Fmoments);
% No objective, minimize trace on moment-matrix instead
if isempty(obj)
obj = trace(M{k+1});
end
% Solve
sol = solvesdp(Fnew,obj,sdpsettings(options,'relax',1));%,'shift',1e-8));
% Construct SOS decompositions if the user wants these
if nargout >= 4
sosout.Q0 = dual(Fnew(1));
sosout.v0 = u{end};
sosout.p0 = u{end}'*dual(Fnew(1))*u{end};
for i=1:length(Fnew)-1
sosout.Qi{i} = dual(Fnew(i+1));
sosout.vi{i} = u{end}(1:length(sosout.Qi{i}));
sosout.pi{i} = sosout.vi{i}'*sosout.Qi{i}*sosout.vi{i};
end
end
% Get the moment matrices
for i = 1:k+1
moments{i} = relaxdouble(M{i});
end
% Extract solutions if possible (at-least fesible and unbounded)
momentsstructure.moment = moments;
momentsstructure.x = x;
momentsstructure.monomials = u{k};
momentsstructure.n = n;
momentsstructure.d = max(1,ceil(max(deg)/2));
x_extract = {};
if nargout>=2 & ~(sol.problem == 1 | sol.problem == 2)
momentsstructure.moment = moments;
momentsstructure.x = x;
momentsstructure.monomials = u{k};
momentsstructure.n = n;
momentsstructure.d = max(1,ceil(max(deg)/2));
x_extract = extractsolution(momentsstructure,options);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -