📄 newcatsdp.m
字号:
function [problem,integer_variables,binary_variables,parametric_variables,quad_info] = catsdp(F,G,h,relax)
%catsdp Internal function: tries to determine the type of
%optimization problem
% Author Johan L鰂berg
% $Id: newcatsdp.m,v 1.10 2005/04/27 15:47:18 joloef Exp $
Counter = size(F.clauses,2);
Ftype = zeros(Counter,1);
real_data = 1;
int_data = 0;
bin_data = 0;
par_data = 0;
poly_constraint = 0;
bilin_constraint = 0;
sigm_constraint = 0;
rank_constraint = 0;
rank_objective = 0;
integer_variables = [];
binary_variables = [];
parametric_variables = [];
kyp_prob = 0;
% ***********************************************
% Setup an empty problem definition
% ***********************************************
problem.objective.linear = 0;
problem.objective.quadratic.convex = 0;
problem.objective.quadratic.nonconvex = 0;
problem.objective.polynomial = 0;
problem.objective.maxdet = 0;
problem.objective.sigmonial = 0;
problem.constraint.equalities.linear = 0;
problem.constraint.equalities.quadratic = 0;
problem.constraint.equalities.polynomial = 0;
problem.constraint.equalities.sigmonial = 0;
problem.constraint.inequalities.elementwise.linear = 0;
problem.constraint.inequalities.elementwise.quadratic.convex = 0;
problem.constraint.inequalities.elementwise.quadratic.nonconvex = 0;
problem.constraint.inequalities.elementwise.sigmonial = 0;
problem.constraint.inequalities.elementwise.polynomial = 0;
problem.constraint.inequalities.semidefinite.linear = 0;
problem.constraint.inequalities.semidefinite.quadratic = 0;
problem.constraint.inequalities.semidefinite.polynomial = 0;
problem.constraint.inequalities.semidefinite.sigmonial = 0;
problem.constraint.inequalities.rank = 0;
problem.constraint.inequalities.secondordercone = [];
problem.constraint.inequalities.rotatedsecondordercone = [];
problem.constraint.integer = 0;
problem.constraint.binary = 0;
problem.complex = 0;
problem.parametric = 0;
% ********************************************************
% Make a list of all globally available discrete variables
% ********************************************************
integer_variables = yalmip('intvariables');
binary_variables = yalmip('binvariables');
for i = 1:Counter
switch F.clauses{i}.type
case 7
integer_variables = union(integer_variables,getvariables(F.clauses{i}.data));
case 8
binary_variables = union(binary_variables,getvariables(F.clauses{i}.data));
case 13
parametric_variables = union(parametric_variables,getvariables(F.clauses{i}.data));
otherwise
end
end
% ********************************************************
% Rank variables
% ********************************************************
rank_variables = yalmip('rankvariables');
any_rank_variables = ~isempty(rank_variables);
% ********************************************************
% Make a list of all globally available nonlinear variables
% ********************************************************
[monomtable,variabletype] = yalmip('monomtable');
%temp = (sum(abs(monomtable),2)==1) & (any(monomtable==1,2));
%linear_variables = find(temp);
%nonlinear_variables = find(~temp);
%sigmonial_variables = find(any(0>monomtable,2) | any(monomtable-fix(monomtable),2));
linear_variables = find(variabletype==0);
nonlinear_variables = find(variabletype~=0);
sigmonial_variables = find(variabletype==4);
allvars = getvariables(F);
any_nonlinear_variables =~isempty(find(ismembc(nonlinear_variables,allvars)));
%any_nonlinear_variables = ~isempty(find(ismembc(nonlinear_variables,allvars)));
any_discrete_variables = ~isempty(integer_variables) | ~isempty(binary_variables);
for i = 1:Counter
Fi = F.clauses{i};
% Only real-valued data?
real_data = real_data & isreal(F.clauses{i}.data);
% Any discrete variables used
if any_discrete_variables
int_data = int_data | any(ismember(getvariables(Fi.data),integer_variables));
bin_data = bin_data | any(ismember(getvariables(Fi.data),binary_variables));
par_data = par_data | any(ismember(getvariables(Fi.data),parametric_variables));
end
if any_rank_variables
rank_constraint = rank_constraint | any(ismember(getvariables(Fi.data),rank_variables));
end
if ~any_nonlinear_variables % No nonlinearly parameterized constraints
switch Fi.type
case {1,9}
problem.constraint.inequalities.semidefinite.linear = 1;
case 2
problem.constraint.inequalities.elementwise.linear = 1;
case 3
problem.constraint.equalities.linear = 1;
case 4
problem.constraint.inequalities.secondordercone = 1;
case 5
problem.constraint.inequalities.rotatedsecondordercone = 1;
otherwise
end
else
% Can be nonlinear stuff
vars = getvariables(Fi.data);
usednonlins = find(ismembc(nonlinear_variables,vars));
if ~isempty(usednonlins)
usedsigmonials = find(ismember(sigmonial_variables,vars));
if ~isempty(usedsigmonials)
switch Fi.type
case 1
problem.constraint.inequalities.semidefinite.sigmonial = 1;
case 2
problem.constraint.inequalities.elementwise.sigmonial = 1;
case 3
problem.constraint.equalities.sigmonial = 1;
case 4
error('Sigmonial SOCP not supported');
case 5
error('Sigmonial RSOCP not supported');
otherwise
error('Report bug in problem classification (sigmonial constraint)');
end
else
deg = degree(Fi.data);
switch deg
case 1
switch Fi.type
case 1
problem.constraint.inequalities.semidefinite.linear = 1;
case 2
problem.constraint.inequalities.elementwise.linear = 1;
case 3
problem.constraint.equalities.linear = 1;
case 4
problem.constraint.inequalities.secondordercone = 1;
case 5
problem.constraint.inequalities.rotatedsecondordercone = 1;
otherwise
error('Report bug in problem classification (linear constraint)');
end
case 2
switch Fi.type
case 1
problem.constraint.inequalities.semidefinite.quadratic = 1;
case 2
problem.constraint.inequalities.elementwise.quadratic.convex = 1;
case 3
problem.constraint.equalities.quadratic = 1;
case 4
error
case 5
error
otherwise
error('Report bug in problem classification (quadratic constraint)');
end
otherwise
switch Fi.type
case 1
problem.constraint.inequalities.semidefinite.polynomial = 1;
case 2
problem.constraint.inequalities.elementwise.polynomial = 1;
case 3
problem.constraint.equalities.polynomial = 1;
case 4
% problem.constraint.inequalities.secondordercone = 1;
case 5
% problem.constraint.inequalities.rotatedsecondordercone = 1;
otherwise
error('Report bug in problem classification (polynomial constraint)');
end
end
end
else
switch Fi.type
case 1
problem.constraint.inequalities.semidefinite.linear = 1;
case 2
problem.constraint.inequalities.elementwise.linear = 1;
case 3
problem.constraint.equalities.linear = 1;
case 4
problem.constraint.inequalities.secondordercone = 1;
case 5
problem.constraint.inequalities.rotatedsecondordercone = 1;
case 7
problem.constraint.integer = 1;
case 8
problem.constraint.binary = 1;
otherwise
error('Report bug in problem classification (linear constraint)');
end
end
end
end
if int_data
problem.constraint.integer = 1;
end
if bin_data
problem.constraint.binary = 1;
end
if ~real_data
problem.complex = 1;
end
if rank_constraint
problem.constraint.inequalities.rank = 1;
end
if (relax==1) | (relax==2)
problem.constraint.integer = 0;
problem.constraint.binary = 0;
int_data = 0;
bin_data = 0;
integer_variables = [];
binary_variables = [];
end
if (relax==1) | (relax==3)
problem.constraint.equalities.linear = problem.constraint.equalities.linear | problem.constraint.equalities.quadratic | problem.constraint.equalities.polynomial | problem.constraint.equalities.sigmonial;
problem.constraint.equalities.quadratic = 0;
problem.constraint.equalities.polynomial = 0;
problem.constraint.equalities.sigmonial = 0;
problem.constraint.inequalities.elementwise.linear = problem.constraint.inequalities.elementwise.linear | problem.constraint.inequalities.elementwise.quadratic.convex | problem.constraint.inequalities.elementwise.quadratic.nonconvex | problem.constraint.inequalities.elementwise.sigmonial | problem.constraint.inequalities.elementwise.polynomial;
problem.constraint.inequalities.elementwise.quadratic.convex = 0;
problem.constraint.inequalities.elementwise.quadratic.nonconvex = 0;
problem.constraint.inequalities.elementwise.sigmonial = 0;
problem.constraint.inequalities.elementwise.polynomial = 0;
problem.constraint.inequalities.semidefinite.linear = problem.constraint.inequalities.semidefinite.linear | problem.constraint.inequalities.semidefinite.quadratic | problem.constraint.inequalities.semidefinite.polynomial | problem.constraint.inequalities.semidefinite.sigmonial;
problem.constraint.inequalities.semidefinite.quadratic = 0;
problem.constraint.inequalities.semidefinite.polynomial = 0;
problem.constraint.inequalities.semidefinite.sigmonial = 0;
poly_constraint = 0;
bilin_constraint = 0;
sigm_constraint = 0;
end
% Analyse the objective function
quad_info = [];
if (~isempty(h)) & ~is(h,'linear') &~(relax==1) &~(relax==3)
if any(ismember(getvariables(h),sigmonial_variables))
problem.objective.sigmonial = 1;
else
[Q,c,f,x,info] = quaddecomp(h);
if info==0
[R,p]=chol(Q);
if p~=0
if min(eig(Q))>=-1e-10
p=0;
[U,S,V]=svd(Q);
i = find(diag(S)>1e-10);
R = sqrt(S(1:max(i),1:max(i)))*V(:,1:max(i))';
end
end
if p==0
problem.objective.quadratic.convex = 1;
else
problem.objective.quadratic.nonconvex = 1;
end
quad_info.Q = Q;
quad_info.c = c;
quad_info.f = f;
quad_info.x = x;
quad_info.R = R;
quad_info.p = p;
else
problem.objective.polynomial = 1;
end
end
else
problem.objective.linear = ~isempty(h);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -