⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kyp.htm

📁 国外专家做的求解LMI鲁棒控制的工具箱,可以相对高效的解决LMI问题
💻 HTM
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>

<head>
<meta http-equiv="Content-Language" content="en-us">
<title>YALMIP Example : Efficient solution of KYP problems</title>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1251">
<meta content="Microsoft FrontPage 6.0" name="GENERATOR">
<meta name="ProgId" content="FrontPage.Editor.Document">
<link href="yalmip.css" type="text/css" rel="stylesheet">
<base target="_self">
</head>

<body leftMargin="0" topMargin="0">

<div align="left">
  <table border="0" cellpadding="4" cellspacing="3" style="border-collapse: collapse" bordercolor="#000000" width="100%" align="left" height="100%">
    <tr>
      <td width="100%" align="left" height="100%" valign="top">
      <h2>KYP problems</h2>
      <hr noShade SIZE="1">
    <p>
    <img border="0" src="exclamationmark.jpg" align="left" width="16" height="16">This 
    example requires <a href="solvers.htm#kypd">KYPD</a> and
    an SDP-solver capable of calculating dual variables.</p>
      <p>Many problems in control and system theory can be formulated using the celebrated 
      Kalman-Yakubovic-Popov lemma (KYP). By using this lemma, a large number of 
      problems can be formulated using LMIs. Unfortunately, many 
      practical problems leads to LMIs far too big to be efficiently solved 
      using standard semidefinite solvers.</p>
      <p>YALMIP can be used with the dedicated solver <a href="solvers.htm#kypd">
      KYPD</a> to efficiently solve some problems with large-scale KYP constraints. 
      In our setting, a <a href="reference.htm#kyp">KYP</a> is a matrix of the 
      form <b><font face="Tahoma">[A<sup>T</sup>P+PA PB;B<sup>T</sup>P 0] + M(x)</font></b>, 
      with <b>P</b> and the <b>x</b> being the free variables, and <b>M</b> a 
      linear operator.</p>
      <p>The following code calculates the L<sub>2</sub>-gain of a random stable 
      system with 40 states, using the dedicated <a href="solvers.htm#kypd">KYPD</a>-solver, 
      and a standard SDP-solver.</p>
      <table cellPadding="10" width="100%">
        <tr>
          <td class="xmpcode">
          <pre>n = 40;
A = randn(n);A = A - max(real(eig(A)))*eye(n)*1.5; % Stable dynamics
B = randn(n,1);
C = randn(1,n);

t = sdpvar(1,1);
P = sdpvar(n,n);

F = set(kyp(A,B,P,blkdiag(C'*C,-t)) &lt; 0)

sol1 = solvesdp(F,t,sdpsettings('solver','kypd'));
sol2 = solvesdp(F,t);

sol1.solvertime/sol2.solvertime % Compare solution time</pre>
          </td>
        </tr>
      </table>
      <p><img border="0" src="demoicon.gif" width="16" height="16">&nbsp; The 
      variable <b>P </b>may only enter in 1 constraint if you intend to use
      <a href="solvers.htm#kypd">KYPD</a>, i.e. you cannot use
      <a href="solvers.htm#kypd">KYPD</a> if you want to impose explicit 
      constraints (including&nbsp; <br>
      positive definiteness) of <b>P</b>. However, positive definiteness of <b>P </b>
      is in some cases implied by the KYP constraint.&nbsp; You can have multiple KYP constraints with different <b>P </b>variables.</p>
      </td>
    </tr>
  </table>
</div>

</body>

</html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -