⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ellipsoidal.htm

📁 国外专家做的求解LMI鲁棒控制的工具箱,可以相对高效的解决LMI问题
💻 HTM
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>

<head>
<meta http-equiv="Content-Language" content="en-us">
<title>YALMIP Example : Determinant maximization</title>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1251">
<meta content="Microsoft FrontPage 6.0" name="GENERATOR">
<meta name="ProgId" content="FrontPage.Editor.Document">
<link href="yalmip.css" type="text/css" rel="stylesheet">
<base target="_self">
</head>

<body leftmargin="0" topmargin="0">

<div align="left">
  <table border="0" cellpadding="4" cellspacing="3" style="border-collapse: collapse" bordercolor="#000000" width="100%" align="left" height="100%">
    <tr>
      <td width="100%" align="left" height="100%" valign="top">
      <h2>Ellipsoidal calculus </h2>
      <hr noshade size="1">
      <p>Let us solve a determinant maximization problem. Given two ellipsoids
      </p>
      <blockquote dir="ltr" style="MARGIN-RIGHT: 0px">
        <p><span style="font-style: normal"><strong>E<sub>1</sub> = {x | x<sup>T</sup>P<sub>1</sub>x</strong></span><strong>&#8804;</strong><strong><span style="font-style: normal">1}</span></strong></p>
        <p><span style="font-style: normal"><strong>E<sub>2</sub> = {x | x<sup>T</sup>P<sub>2</sub>x</strong></span><strong>&#8804;</strong><span style="font-style: normal"><strong>1}</strong></span></p>
      </blockquote>
      <p>Find the ellipsoid <strong>E = {x | x</strong><span style="font-style: normal"><strong><sup>T</sup></strong></span><strong>Px&#8804;1}</strong> 
      with smallest possible volume that contain the union of <strong>E<sub>1</sub></strong> 
      and <strong>E<sub>2</sub></strong>. By using the fact that the volume of the 
      ellipsoid is proportional to <strong>-det P </strong>and applying the S-procedure, 
      it can be shown that this problem can be written as</p>
      <p><img border="0" src="ellips5.gif" hspace="45"></p>
      <p>The objective function <b>-det P</b> (which is minimized) is not 
      convex, but monotonic transformations can render this problem convex. One 
      alternative is the logarithmic transform, leading to minimization of <b>-log 
      det P</b> instead. This operator was used in previous version of YALMIP, 
      but is not recommended any more. </p>
      <p>Instead, YALMIP uses <b>-(det P)<sup>1/m</sup></b> where <b>m</b> is the 
      smallest power of 2 larger than or equal to the dimension of <b>P</b> (hence, 
      for matrices with dimension equal to a power of two, the function gives 
      the geometric mean of the eigenvalues of <b>P</b>). The function <b>(det 
      P)<sup>1/m</sup></b>, called <b>geomean2</b> in YALMIP, can be modeled using semidefinite and second order 
      cones, hence any SDP solver can be used for solving determinant 
		maximization problems. See <a href="readmore.htm#NESNEM94">[Nesterov and 
      Nemirovskii]</a> for details.</p>
      <table cellpadding="10" width="100%">
        <tr>
          <td class="xmpcode"><font face="Courier New" color="#0000c0">n = 2;<br>
          P1 = randn(2);P1 = P1*P1&#39;; % Generate random ellipsoid<br>
          P2 = randn(2);P2 = P2*P2&#39;; % Generate random ellipsoid<br>
          t = sdpvar(2,1);<br>
          P = sdpvar(n,n);<br>
          F = set(1 &gt; t &gt; 0);<br>
          F = F + set(t(1)*P1-P &gt; 0);<br>
          F = F + set(t(2)*P2-P &gt; 0);<br>
          sol = solvesdp(F,-geomean2(P));<br>
          ellipplot(double(P));hold on;<br>
          ellipplot(double(P1));<br>
          ellipplot(double(P2));</font></td>
        </tr>
      </table>
      <p>If you have
      the dedicated solver
      <a href="solvers.htm#maxdet">MAXDET</a> installed and want to use it, you must use the dedicated command
      <a href="reference.htm#logdet">logdet</a> for the objective and explicitly select
      <a href="solvers.htm#maxdet">MAXDET</a>. This command can not be used 
      in any other construction than in the objective function, compared to the <b>geomean2</b> operator that can be used as any other variable in YALMIP, since it 
      a so called <a href="extoperators.htm">extended operator</a>. </p>
      <table cellpadding="10" width="100%">
        <tr>
          <td class="xmpcode"><font face="Courier New" color="#0000c0">solvesdp(F,-logdet(P),sdpsettings('solver','maxdet'));<br>
          ellipplot(double(P));hold on;<br>
          ellipplot(double(P1));<br>
          ellipplot(double(P2));</font></td>
        </tr>
      </table>
      <p>
          <img border="0" src="demoicon.gif" width="16" height="16"> Note that 
		if you use the
      <a href="reference.htm#logdet">logdet</a> command, if 
      <a href="solvers.htm#maxdet">MAXDET</a> not is 
      explicitly selected, YALMIP will use <b>-(det P)<sup>1/m</sup></b> as objective 
      function instead.
      This will not cause any problems if your objective function is a simple
      <a href="reference.htm#logdet">logdet</a> expression (since the two functions 
		are monotonically related). However, if you have a mixed objective 
		function such as <b>tr(P)-logdet(P)</b>, the conversion will change your 
		optimal solution. Hence, if you really want to optimize the mixed 
		expression, you must explicitly select
      <a href="solvers.htm#maxdet">MAXDET</a>. Otherwise, YALMIP will change 
		your objective to <b>tr(P)-(det P)<sup>1/m</sup></b></td>
    </tr>
  </table>
</div>

</body>

</html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -