⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 se2_zh.m

📁 matlab仿真通过的降噪程序
💻 M
字号:
%%% @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ %%%
 
%     This algorithm is used to enhance the noisy speech especially poluted by broadband white noise.
%     
%     Last modified  Feb 2004
%     
%     Southeast University

%%% @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ %%%

clear all;
[y1,fs,bits]=wavread('E:\noise enhancing\wav\5.wav');           % input clean speech
y1=y1/max(abs(y1));
%wavwrite(y1,8000,8,'F:\noise enhancing\voise\5.wav');
figure(1);
plot(y1);

[noise,fs1,bits1]=wavread('E:\noise enhancing\wav\5_noise.wav');    % input noise
y=mixsig(y1,noise,10);                                              % mix clean speech with noise according to definite SNR
y=y/max(abs(y));%归一化
% wavwrite(y,8000,8,'F:\noise enhancing\wav\mymasking_s&w(-5).wav');
figure(2);
plot(y);

%% [y,fs,bits]=wavread('F:\noise enhancing\noise\denoise\出租车隧道.wav');
frame = 256;    % Defining frame size
shift=64;
win=hamming(256);

for j1 = 1:length(y),
 signal(j1) = y(j1);
end;

ps_noise=zeros(length(signal)/shift,frame);
frame_temp = zeros(length(signal)/frame,frame);

%%%%  estimation of noise energy using the first five frames  %%%%
hh = 0; 
   for k = 1 : 5,
       for l = 1 : frame,
          b(l) = signal(hh+l);
      end;
        hh = hh + frame;
        frame_temp(k,1:frame) = abs(fft(b));                      %fft for the first 5 frames
        ps_noise(k,1:frame) = (frame_temp(k,1:frame).*conj(frame_temp(k,1:frame)))/frame;
   end;
    ps_noise(1,1:frame)= (sum(ps_noise(1:k,1:frame))/5);
    frame_temp_initial(1:frame)=sum(frame_temp(k,1:frame))/k;



%%%%%%% START OF THE NOISE ELIMINATION THROUGH SPECTRAL SUBTRACTION BASED ON THE THRESHOLD SET %%%%%%%%%
head = 0; 
   for k = 1 :( length(signal)/shift-3),
        for m = 1 : frame,
          abc1(m) = signal(head+m);
          
        end;
        abc1=abc1.*win';
        
        head = head +shift;
        frame_temp(k,1:frame) = abs(fft(abc1));% FFT OF THE SIGNAL + NOISE FRAME BY FRAME

        frame_angle(k,1:frame) = angle(fft(abc1));% ANGLE OF FFT OF THE SIGNAL + NOISE FRAME BY FRAME

        ps_signal(k,1:frame) = (frame_temp(k,1:frame).*conj(frame_temp(k,1:frame)))./frame;
        
        ps_temp(k,1:frame)=ps_signal(k,1:frame);
        

       %%%%%%%%   end detection: ceptrum distance coefficient  %%%%%%%%%%
       if k==1
             framenoise_temp(k,1:frame)=frame_temp_initial(1:frame); 
       else framenoise_temp(k,1:frame)=framenoise_temp(k-1,1:frame);
       end
       
       dd(k)=sum(ifft(log(abs(framenoise_temp(k,1:frame)))))/frame;  %% noise ceptrum
       ddi=sum(ifft(log(abs(framenoise_temp(1,1:frame)))))/frame;
       d(k)=sum(ps_signal(k,1:frame).*exp(-j*2*pi*(1:frame)*k/frame));%% signal ceptrum
       di=sum(ps_signal(k,1:frame));
       
       if k>1 
           dd(k)=0.8*dd(k)+0.2*d(k-1);
       end
       
       cep_disp(k)=4.3429*sqrt((di-ddi).^2+2.*((d(k)-dd(k)).^2));%% ceptrum distance
       
       if k>1
           cep_disp(k)=0.8*cep_disp(k)+0.2*cep_disp(k-1);    % flat
       end
       
       if cep_disp(k)<5
           if k>1
              ps_noise(k,1:frame)=0.9*ps_noise(k-1,1:frame)+0.1*ps_signal(k,1:frame); 
              framenoise_temp(k,1:frame)=0.9*framenoise_temp(k-1,1:frame)+0.1*frame_temp(k,1:frame);
           end
       end
       
        frame_ps(1,k) = (sum(ps_signal(k,1:frame)));
        frame_pn(1,k)=sum(ps_noise(k,1:frame));
        ps_final(1,k) = frame_ps(1,k)- 0.8*frame_pn(1,k);
   
  %%% Wiener filtering to estimate power spectrum of signal
  
   aa=0.7;bb=2;
   h(1,k)=power(ps_final(1,k)/(ps_final(1,k)+aa*frame_pn(1,k)),bb);
   frame1(k,1:frame) = h(1,k).*(frame_temp(k,1:frame));
               
   ps_signal(k,1:frame) = (frame1(k,1:frame).*conj(frame1(k,1:frame)))./frame;
   
 %%%%%%%%%%%%%%%%%%     calculate masking value     %%%%%%%%%%%%%%%%%%%%

	T=zeros(1,129);
    b=zeros(1,18);c=zeros(1,18);o=zeros(1,18);
    sf=zeros(18,18);

 %%%  calculate power spectrum of every bark band   
	for i1=1:3,
	    b(1)=b(1)+ps_signal(k,i1);
    end;
	for i1=4:6,
		b(2)=b(2)+ps_signal(k,i1);
    end;
	for i1=7:10,
		b(3)=b(3)+ps_signal(k,i1);
    end;
	for i1=11:13,
		b(4)=b(4)+ps_signal(k,i1);
    end;
	for i1=14:16,
		b(5)=b(5)+ps_signal(k,i1);
    end;
	for i1=17:20,
		b(6)=b(6)+ps_signal(k,i1);
    end;
	for i1=21:25,
		b(7)=b(7)+ps_signal(k,i1);
    end;
	for i1=26:29,
		b(8)=b(8)+ps_signal(k,i1);
    end;
	for i1=30:35,
		b(9)=b(9)+ps_signal(k,i1);
    end;
	for i1=36:41,
		b(10)=b(10)+ps_signal(k,i1);
    end;
	for i1=42:47,
		b(11)=b(11)+ps_signal(k,i1);
    end;
	for i1=48:55,
		b(12)=b(12)+ps_signal(k,i1);
    end;
	for i1=56:64,
		b(13)=b(13)+ps_signal(k,i1);
    end;
	for i1=65:74,
		b(14)=b(14)+ps_signal(k,i1);
    end;
	for i1=75:86,
		b(15)=b(15)+ps_signal(k,i1);
    end;
	for i1=87:101,
		b(16)=b(16)+ps_signal(k,i1);
    end;
	for i1=102:118,
		b(17)=b(17)+ps_signal(k,i1);
    end;
	for i1=119:129,
		b(18)=b(18)+ps_signal(k,i1);
    end;
% 	for i1=142:170,
% 		b(19)=b(19)+ps_signal(k,i1);
%     end;
% 	for i1=171:205,
% 		b(20)=b(20)+ps_signal(k,i1);
%     end;
% 	for i1=206:246,
% 		b(21)=b(21)+ps_signal(k,i1);
%     end;    
%     for i1=247:256,
% 		b(22)=b(22)+ps_signal(k,i1);
%     end;
	
%%%  calculate the spread function   
    for i1=1:18,
    sf(i1)=15.81+7.5*(i1+0.474)-17.5*sqrt(1+(i1+0.474)*(i1+0.474));
    end;

%%%  apply the spread function to the critical band spectrum
%	for j1=1:22,
%		c(j1)=0;
%		for i1=1:22,
%			c(j1)=c(j1)+b(i1)*sf(i1,j1);                          %$ (19)
%        end;
%    end;
    
    cc_temp=conv2(b,sf);
    for i1=1:18		
		for j1=1:22
			c(i1)=c(i1)+sum(cc_temp(i1,j1));
        end;
    end;

%%% calculate the spread masking threshold
	temp_value=0.0;
	for i1=1:18,
		temp_value=temp_value+b(i1);
    end;
	ua=temp_value/256.0;

	temp_value=0;
	for i1=1:129, 
		temp_value=temp_value+log10(ps_signal(k,i1));
    end;
	temp_value=temp_value/129.0;
	uj=power(10,temp_value);
    
	 sfm=-10*log10(uj/ua);                %% spectrual flatness measurement

	u=min(sfm/(-60),1);                   %% tonality of signal

  for i1=1:18,
	  O(i1)=u*(14.5+i1)+(1-u)*5.5;
      T(i1)=power(10,log10(c(i1))-O(i1)/10);
	  c(i1)=T(i1);%c[i]暂存T[i]
  end;
    for i1=1:3,
	    T(i1)=c(1);
    end;
	for i1=4:6,
		T(i1)=c(2);
    end;
	for i1=7:10,
		T(i1)=c(3);
    end;
	for i1=11:13,
		T(i1)=c(4);
    end;
	for i1=14:16,
		T(i1)=c(5);
    end;
	for i1=17:20,
		T(i1)=c(6);
    end;
	for i1=21:25,
		T(i1)=c(7);
    end;
	for i1=26:29,
		T(i1)=c(8);
    end;
	for i1=30:35,
		T(i1)=c(9);
    end;
	for i1=36:41,
		T(i1)=c(10);
    end;
	for i1=42:47,
		T(i1)=c(11);
    end;
	for i1=48:55,
		T(i1)=c(12);
    end;
	for i1=56:64,
		T(i1)=c(13);
    end;
	for i1=65:74,
		T(i1)=c(14);
    end;
	for i1=75:86,
		T(i1)=c(15);
    end;
	for i1=87:101,
		T(i1)=c(16);
    end;
	for i1=102:118,
		T(i1)=c(17);
    end;
	for i1=119:129,
		T(i1)=c(18);
    end;
% 	for i1=142:170,
% 		T(i1)=c(19);
%     end;
% 	for i1=171:205,
% 		T(i1)=c(20);
%     end;
% 	for i1=206:246
% 		T(i1)=c(21);
%     end;
% 	for i1=247:256,
% 		T(i1)=c(22);
%     end;
	
		
%%%  calculate the absolute threshold
	mm=0.0;
	for i1=1:129,
		f(i1)=mm;
		mm=mm+8/129;
    end;
	
	f(1)=f(2);
	for i1=1:128,
         f(i1)=3.64*(f(i1).^(-0.8))- 6.5*exp(-0.6*((f(i1)-3.3).^2))+0.001*(f(i1).^4);
    end;
	
	for i1=1:129,
		T(i1)=max(T(i1),f(i1));
    end;
        tmax=0;
        tmin=0;
	for i1=1:129,
		if(T(i1)>tmax)
			tmax=T(i1);
        end;
		if(T(i1)<tmin)
			tmin=T(i1);
        end;
    end;
    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     
        for k1=1:129,
			alfa(k1)=(tmax*6-T(k1)*6+1*T(k1)-1*tmin)/(tmax-tmin);
			beita(k1)=(tmax*0.02-T(k1)*0.02+0*T(k1)-0*tmin)/(tmax-tmin);      
            temppow=abs(ps_noise(k,k1))/abs(ps_temp(k,k1));
            
			if(power(temppow,2)<(1.0/(alfa(k1)+beita(k1))))
				frame1( k,k1)=power((1-alfa(k1)*power(temppow,2)),0.5)*ps_temp(k,k1);
            else
				frame1(k,k1)=power((beita(k1)*power(temppow,2)),0.5)*ps_temp(k,k1);
            end;
        end;
      
  for i1=130:256
     frame1(k,i1)=conj(frame1(k,258-i1));
  end        
 %%%  plus phase to the signal       
       frame1(k,1:frame) = frame1(k,1:frame).*(exp(i*frame_angle(k,1:frame)));
 %%%  back to time domain
       frame2(k,1:frame)=ifft(frame1(k,1:frame));
 
 %%%  Retriving back the signal
       if k==1 
            signal(1,1:shift)=frame2(k,1:shift);
        else if k==2
              signal(1,(shift+1):(2*shift))=(frame2(k,1:shift)+frame2(k-1,(shift+1):(shift*2)))/2;
        else if  k==3
              signal(1,(shift*2+1):(3*shift))=(frame2(k,1:shift)+frame2(k-1,(shift+1):(shift*2))+frame2(k-2,(shift*2+1):(shift*3)))/3;
        else signal(1,(((k-1)*shift+1):(k*shift)))=(frame2(k,1:shift)+frame2(k-1,(shift+1):(shift*2))+frame2(k-2,(shift*2+1):(shift*3))+frame2(k-3,(shift*3+1):frame))/4;
             end;
             end;
       end;    
 end     
   
 signal((length(y)-1000):(length(y)))=[];   %give up 4 frames in the end
 y1((length(y1)-1000):(length(y1)))=[];
 figure(3);
 signal=signal';
 signal=signal/max(abs(signal));
 plot(1:length(signal),signal);
 
 overall_snr = 10*log10(sum(abs(y1).^2)/sum((abs(y1-signal)).^2))   %%%  estimate the SNR after processing

wavwrite(signal,8000,8,'E:\noise enhancing\wav\result2(10).wav');

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -