📄 psnr.m
字号:
clear all;
[y1,fs,bits]=wavread('f:\voise\3.wav');
%y1=y1/max(abs(y1));%归一化
wavwrite(y1,8000,8,'f:\wav\3.wav');
figure(1);
plot(y1);
[noise,fs1,bits1]=wavread('f:\voise\3_noise.wav');
y=mixsig(y1,noise,5);
%y=y/max(abs(y));%归一化
wavwrite(y,8000,8,'f:\wav\mymasking_s&w.wav');%0db带噪信号
figure(2);
plot(y);
%clear all;
%[y1,fs,bits]=wavread('8k8bit.wav'); % Actual Signal
%[noise,fs1,bits1]=wavread('8k8bit_noise.wav');
%y=mixsig(y1,noise, 10);
%wavwrite(y,8000,8,'f:\a\mymasking_s&w.wav');
%figure(1);
%plot(y);
frame = 256; % Defining frame size
%for k = 1:2560, % Loop for first 50 frames(0.5 seconds) of noise
% y_temp(k) = y(k);
%end;
shift=64;
win=hamming(256);
signal(1)=y(1);
for j1 = 2:length(y),
signal(j1) = y(j1)-0.9375*y(j1-1); %preemphasize
end;
ps_noise=zeros(length(signal)/frame,frame);
frame_temp = zeros(length(signal)/frame,frame);
%length1 = length(y_temp); % length of the noise samples(first 4000 samples)
%ps_noise = zeros(length1/frame,frame);
%frame_temp = zeros(length1/frame,frame);
%hh = 0;
% for k = 1 : length1/frame,
% for l = 1 : frame,
% b(l) = y_temp(hh+l);
% end;
% hh = hh + frame;
% frame_temp(k,1:frame) = fft(b); %fft for the first 50 frames
% ps_noise(k,1:frame) = (frame_temp(k,1:frame).*conj(frame_temp(k,1:frame)))/frame;
% A(1,k) = (sum(ps_noise(k,1:frame))); % Sum of the power spectral densities of samples within a frame
% end;
%threshold = sum(A)*frame/length1; % setting the threshold for the noise(frame noise)
hh = 0;
for k = 1 : 5,
for l = 1 : frame,
b(l) = signal(hh+l);
end;
hh = hh + frame;
frame_temp(k,1:frame) = fft(b); %fft for the first 50 frames
ps_noise(k,1:frame) = (frame_temp(k,1:frame).*conj(frame_temp(k,1:frame)))/frame;
%ps_noise(1,1:frame)= (sum(ps_noise(1:k,l))/20); % Sum of the power spectral densities of samples within a frame
end;
%ps_noise=zeros(length(signal)/frame,frame);
%ps_noise(1,1:frame)= sum(A)/20; % setting the threshold for the noise(frame noise)
ps_noise(1,1:frame)= (sum(ps_noise(1:k,1:frame))/5);
frame_temp_initial(1:frame)=sum(frame_temp(k,1:frame))/k;
head = 0;
mm=1;
nn=1;
%sum1=0;
%sum2=0;
% START OF THE NOISE ELIMINATION THROUGH SPECTRAL SUBTRACTION BASED ON THE THRESHOLD SET
% for k = 1 : length(signal)/shift-3,
for k = 1 : length(signal)/frame,
for m = 1 : frame,
abc1(m) = signal(head+m);
%
end;
%abc1=abc1.*win';
% head = head +shift;
head=head+frame;
frame_temp(k,1:frame) = fft(abc1);% FFT OF THE SIGNAL + NOISE FRAME BY FRAME
frame_angle(k,1:frame) = angle(fft(abc1));% ANGLE OF FFT OF THE SIGNAL + NOISE FRAME BY FRAME
ps_signal(k,1:frame) = (frame_temp(k,1:frame).*conj(frame_temp(k,1:frame)))./frame;
ps_temp=zeros(1,frame);
ps_temp(1,1:frame)=ps_signal(k,1:frame);
if k==1
ps_noise(k,1:frame)=0.98*ps_noise(1,1:frame)+0.02*ps_signal(k,1:frame);
% ps_signal(k,1:frame)=0.98*ps_signal(k,1:frame)+0.02*ps_signal(k,1:frame);
else
ps_noise(k,1:frame)=0.99*ps_noise(k-1,1:frame)+0.01*ps_signal(k,1:frame);
ps_signal(k,1:frame)=0.1*ps_signal(k-1,1:frame)+0.9*ps_signal(k,1:frame);
end
frame_ps(1,k) = (sum(ps_signal(k,1:frame)));
frame_pn(1,k)=sum(ps_noise(k,1:frame));
if k==1
sum1(k)=frame_ps(1,k)-frame_pn(1,k);
sum2(k)=frame_pn(1,k);
else
sum1(k)=sum1(k-1)+frame_ps(1,k)-frame_pn(1,k);
sum2(k)=sum2(k-1)+frame_pn(1,k);
end
psnr(1,k)=10*log10(sum1(k)/sum2(k));
asnr(1,k)=10*log10(abs((frame_ps(1,k)-frame_pn(1,k))/frame_pn(1,k)));
%psnr(1,k)=10*log10(sum(abs(frame_ps(1,1:k)-frame_pn(1,1:k)))/sum(frame_pn(1,1:k)));
%ps_final(1,k) = frame_ps(1,k) - threshold;
%aa=0.8;
ps_final(1,k) = frame_ps(1,k)- 0.5*frame_pn(1,k);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
for k=1:30
ppp_signal(k,1:frame)=ps_signal(k,1:frame);
ppp_noise(k,1:frame)=ps_noise(k,1:frame);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -