📄 end_detect3.m
字号:
clear all;
tic
[y1,fs,bits]=wavread('f:\voise\3.wav');
y1=y1/max(abs(y1));%归一化
wavwrite(y1,8000,8,'f:\wav\3.wav');
figure(1);
plot(y1);
[noise,fs1,bits1]=wavread('f:\voise\3_noise.wav');
y=mixsig(y1,noise,-10);
y=y/max(abs(y));%归一化
wavwrite(y,8000,8,'f:\wav\mymasking_s&w.wav');%0db带噪信号
figure(2);
plot(y);
%clear all;
%[y1,fs,bits]=wavread('8k8bit.wav'); % Actual Signal
%[noise,fs1,bits1]=wavread('8k8bit_noise.wav');
%y=mixsig(y1,noise, 10);
%wavwrite(y,8000,8,'f:\a\mymasking_s&w.wav');
%figure(1);
%plot(y);
frame = 256; % Defining frame size
%for k = 1:2560, % Loop for first 50 frames(0.5 seconds) of noise
% y_temp(k) = y(k);
%end;
shift=128;
win=hamming(256);
for j1 = 1:length(y),
signal(j1) = y(j1);
signal_ori(j1)=y1(j1);
end;
ps_noise=zeros(length(signal)/frame,frame);
frame_temp = zeros(length(signal)/frame,frame);
framenoise_temp = zeros(length(signal)/frame,frame);
%length1 = length(y_temp); % length of the noise samples(first 4000 samples)
%ps_noise = zeros(length1/frame,frame);
%frame_temp = zeros(length1/frame,frame);
%hh = 0;
% for k = 1 : length1/frame,
% for l = 1 : frame,
% b(l) = y_temp(hh+l);
% end;
% hh = hh + frame;
% frame_temp(k,1:frame) = fft(b); %fft for the first 50 frames
% ps_noise(k,1:frame) = (frame_temp(k,1:frame).*conj(frame_temp(k,1:frame)))/frame;
% A(1,k) = (sum(ps_noise(k,1:frame))); % Sum of the power spectral densities of samples within a frame
% end;
%threshold = sum(A)*frame/length1; % setting the threshold for the noise(frame noise)
hh = 0;
for k = 1 : 5,
for l = 1 : frame,
b(l) = signal(hh+l);
end;
hh = hh + frame;
frame_temp(k,1:frame) = abs(fft(b)); %fft for the first 50 frames
ps_noise(k,1:frame) = (frame_temp(k,1:frame).*conj(frame_temp(k,1:frame)))/frame;
E_N(k)=sum(ps_noise(k,1:frame))/frame;
D_N(k)=sum((ps_noise(k,1:frame)-E_N(k)).*(ps_noise(k,1:frame)-E_N(k)))/frame;
%ps_noise(1,1:frame)= (sum(ps_noise(1:k,l))/20); % Sum of the power spectral densities of samples within a frame
end;
%ps_noise=zeros(length(signal)/frame,frame);
%ps_noise(1,1:frame)= sum(A)/20; % setting the threshold for the noise(frame noise)
ps_noise(1,1:frame)= (sum(ps_noise(1:k,1:frame))/5);
frame_temp_initial(1:frame)=sum(frame_temp(k,1:frame))/k;
DN=sum(D_N(k))/5*100000000;
error=0;
error2=0;
head = 0;
mm=1;
nn=1;
% START OF THE NOISE ELIMINATION THROUGH SPECTRAL SUBTRACTION BASED ON THE THRESHOLD SET
for k = 1 : length(signal)/frame,
for m = 1 : frame,
abc1(m) = signal(head+m);
abc_ori(m)=signal_ori(head+m);
%abc1=abc1.*win';
end;
head = head +frame;
frame_temp(k,1:frame) = abs(fft(abc1));% FFT OF THE SIGNAL + NOISE FRAME BY FRAME
frame_angle(k,1:frame) = angle(fft(abc1));% ANGLE OF FFT OF THE SIGNAL + NOISE FRAME BY FRAME
ps_signal(k,1:frame) = (frame_temp(k,1:frame).*conj(frame_temp(k,1:frame)))./frame;
ps_temp=zeros(1,frame);
ps_temp(1,1:frame)=ps_signal(k,1:frame);
if k==1
ps_noise(k,1:frame)=0.98*ps_noise(1,1:frame)+0.02*ps_signal(k,1:frame);
% ps_signal(k,1:frame)=0.98*ps_signal(k,1:frame)+0.02*ps_signal(k,1:frame);
else
ps_noise(k,1:frame)=0.99*ps_noise(k-1,1:frame)+0.01*ps_signal(k,1:frame);
ps_signal(k,1:frame)=0.5*ps_signal(k-1,1:frame)+0.5*ps_signal(k,1:frame);
end
frame_ps(1,k) = (sum(ps_signal(k,1:frame)));
frame_pn(1,k)=sum(ps_noise(k,1:frame));
%ps_final(1,k) = frame_ps(1,k) - threshold;
%aa=0.8;
ps_final(1,k) = frame_ps(1,k)-frame_pn(1,k);
E_S(k)=sum(ps_signal(k,1:frame))/frame;
D_S(k)=sum((ps_signal(k,1:frame)-E_S(k)).*(ps_signal(k,1:frame)-E_S(k)))/frame*100000000;
ori_value(k)=sum(abc_ori(m));
if ori_value(k)==0
ori(k)=0;
else ori(k)=1;
end
if D_S(k)>3*DN
dec(k)=1;
else dec(k)=0;
end
if dec(k)==0 & ori(k)==1
error2=error2+1;
end
if dec(k)==ori(k)
else error=error+1;
end
end
figure(3);
stem(ori);
figure(4);
stem(dec);
t=toc
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -