📄 ym2149_volmix.vhd
字号:
--
-- A simulation model of YM2149 (AY-3-8910 with bells on)
-- Copyright (c) MikeJ - Jan 2005
--
-- All rights reserved
--
-- Redistribution and use in source and synthezised forms, with or without
-- modification, are permitted provided that the following conditions are met:
--
-- Redistributions of source code must retain the above copyright notice,
-- this list of conditions and the following disclaimer.
--
-- Redistributions in synthesized form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in the
-- documentation and/or other materials provided with the distribution.
--
-- Neither the name of the author nor the names of other contributors may
-- be used to endorse or promote products derived from this software without
-- specific prior written permission.
--
-- THIS CODE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
-- THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-- PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE
-- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-- POSSIBILITY OF SUCH DAMAGE.
--
-- You are responsible for any legal issues arising from your use of this code.
--
-- The latest version of this file can be found at: www.fpgaarcade.com
--
-- Email support@fpgaarcade.com
--
-- Revision list
--
-- version 001 initial release
--
-- Clues from MAME sound driver and Kazuhiro TSUJIKAWA
--
-- These are the measured outputs from a real chip for a single Isolated channel into a 1K load (V)
-- vol 15 .. 0
-- 3.27 2.995 2.741 2.588 2.452 2.372 2.301 2.258 2.220 2.198 2.178 2.166 2.155 2.148 2.141 2.132
-- As the envelope volume is 5 bit, I have fitted a curve to the not quite log shape in order
-- to produced all the required values.
-- (The first part of the curve is a bit steeper and the last bit is more linear than expected)
--
-- NOTE, this component uses a volume table for accurate mixing of the three analogue channels,
-- where the outputs are wired together - like in the Atari ST
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity YM2149 is
port (
-- data bus
I_DA : in std_logic_vector(7 downto 0);
O_DA : out std_logic_vector(7 downto 0);
O_DA_OE_L : out std_logic;
-- control
I_A9_L : in std_logic;
I_A8 : in std_logic;
I_BDIR : in std_logic;
I_BC2 : in std_logic;
I_BC1 : in std_logic;
I_SEL_L : in std_logic;
O_AUDIO : out std_logic_vector(7 downto 0);
-- port a
I_IOA : in std_logic_vector(7 downto 0);
O_IOA : out std_logic_vector(7 downto 0);
O_IOA_OE_L : out std_logic;
-- port b
I_IOB : in std_logic_vector(7 downto 0);
O_IOB : out std_logic_vector(7 downto 0);
O_IOB_OE_L : out std_logic;
--
ENA : in std_logic; -- clock enable for higher speed operation
RESET_L : in std_logic;
CLK : in std_logic -- note 6 Mhz
);
end;
architecture RTL of YM2149 is
component vol_table
port (
CLK : in std_logic;
ADDR : in std_logic_vector(11 downto 0);
DATA : out std_logic_vector(9 downto 0)
);
end component;
-- signals
type array_16x8 is array (0 to 15) of std_logic_vector(7 downto 0);
type array_3x12 is array (1 to 3) of std_logic_vector(11 downto 0);
signal cnt_div : std_logic_vector(3 downto 0) := (others => '0');
signal noise_div : std_logic := '0';
signal ena_div : std_logic;
signal ena_div_noise : std_logic;
signal poly17 : std_logic_vector(16 downto 0) := (others => '0');
-- registers
signal addr : std_logic_vector(7 downto 0);
signal busctrl_addr : std_logic;
signal busctrl_we : std_logic;
signal busctrl_re : std_logic;
signal reg : array_16x8;
signal env_reset : std_logic;
signal ioa_inreg : std_logic_vector(7 downto 0);
signal iob_inreg : std_logic_vector(7 downto 0);
signal noise_gen_cnt : std_logic_vector(4 downto 0);
signal noise_gen_op : std_logic;
signal tone_gen_cnt : array_3x12 := (others => (others => '0'));
signal tone_gen_op : std_logic_vector(3 downto 1) := "000";
signal env_gen_cnt : std_logic_vector(15 downto 0);
signal env_ena : std_logic;
signal env_hold : std_logic;
signal env_inc : std_logic;
signal env_vol : std_logic_vector(4 downto 0);
signal vol_table_in : std_logic_vector(11 downto 0);
signal vol_table_out : std_logic_vector(9 downto 0);
begin
-- cpu i/f
p_busdecode : process(I_BDIR, I_BC2, I_BC1, addr, I_A9_L, I_A8)
variable cs : std_logic;
variable sel : std_logic_vector(2 downto 0);
begin
-- BDIR BC2 BC1 MODE
-- 0 0 0 inactive
-- 0 0 1 address
-- 0 1 0 inactive
-- 0 1 1 read
-- 1 0 0 address
-- 1 0 1 inactive
-- 1 1 0 write
-- 1 1 1 read
busctrl_addr <= '0';
busctrl_we <= '0';
busctrl_re <= '0';
cs := '0';
if (I_A9_L = '0') and (I_A8 = '1') and (addr(7 downto 4) = "0000") then
cs := '1';
end if;
sel := (I_BDIR & I_BC2 & I_BC1);
case sel is
when "000" => null;
when "001" => busctrl_addr <= '1';
when "010" => null;
when "011" => busctrl_re <= cs;
when "100" => busctrl_addr <= '1';
when "101" => null;
when "110" => busctrl_we <= cs;
when "111" => busctrl_addr <= '1';
when others => null;
end case;
end process;
p_oe : process(busctrl_re)
begin
-- if we are emulating a real chip, maybe clock this to fake up the tristate typ delay of 100ns
O_DA_OE_L <= not (busctrl_re);
end process;
-- CLOCKED
--p_waddr : process
--begin
---- looks like registers are latches in real chip, but the address is caught at the end of the address state.
--wait until rising_edge(CLK);
--if (RESET_L = '0') then
--addr <= (others => '0');
--else
--if (busctrl_addr = '1') then
--addr <= I_DA;
--end if;
--end if;
--end process;
--p_wdata : process
--begin
---- looks like registers are latches in real chip, but the address is caught at the end of the address state.
--wait until rising_edge(CLK);
--env_reset <= '0';
--if (RESET_L = '0') then
--reg <= (others => (others => '0'));
--env_reset <= '1';
--else
--env_reset <= '0';
--if (busctrl_we = '1') then
--case addr(3 downto 0) is
--when x"0" => reg(0) <= I_DA;
--when x"1" => reg(1) <= I_DA;
--when x"2" => reg(2) <= I_DA;
--when x"3" => reg(3) <= I_DA;
--when x"4" => reg(4) <= I_DA;
--when x"5" => reg(5) <= I_DA;
--when x"6" => reg(6) <= I_DA;
--when x"7" => reg(7) <= I_DA;
--when x"8" => reg(8) <= I_DA;
--when x"9" => reg(9) <= I_DA;
--when x"A" => reg(10) <= I_DA;
--when x"B" => reg(11) <= I_DA;
--when x"C" => reg(12) <= I_DA;
--when x"D" => reg(13) <= I_DA; env_reset <= '1';
--when x"E" => reg(14) <= I_DA;
--when x"F" => reg(15) <= I_DA;
--when others => null;
--end case;
--end if;
--end if;
--end process;
-- LATCHED, useful when emulating a real chip in circuit. Nasty as gated clock.
p_waddr : process(reset_l, busctrl_addr)
begin
-- looks like registers are latches in real chip, but the address is caught at the end of the address state.
if (RESET_L = '0') then
addr <= (others => '0');
elsif falling_edge(busctrl_addr) then -- yuk
addr <= I_DA;
end if;
end process;
p_wdata : process(reset_l, busctrl_we, addr)
begin
if (RESET_L = '0') then
reg <= (others => (others => '0'));
elsif falling_edge(busctrl_we) then
case addr(3 downto 0) is
when x"0" => reg(0) <= I_DA;
when x"1" => reg(1) <= I_DA;
when x"2" => reg(2) <= I_DA;
when x"3" => reg(3) <= I_DA;
when x"4" => reg(4) <= I_DA;
when x"5" => reg(5) <= I_DA;
when x"6" => reg(6) <= I_DA;
when x"7" => reg(7) <= I_DA;
when x"8" => reg(8) <= I_DA;
when x"9" => reg(9) <= I_DA;
when x"A" => reg(10) <= I_DA;
when x"B" => reg(11) <= I_DA;
when x"C" => reg(12) <= I_DA;
when x"D" => reg(13) <= I_DA;
when x"E" => reg(14) <= I_DA;
when x"F" => reg(15) <= I_DA;
when others => null;
end case;
end if;
env_reset <= '0';
if (busctrl_we = '1') and (addr(3 downto 0) = x"D") then
env_reset <= '1';
end if;
end process;
p_rdata : process(busctrl_re, addr, reg)
begin
O_DA <= (others => '0'); -- 'X'
if (busctrl_re = '1') then -- not necessary, but useful for putting 'X's in the simulator
case addr(3 downto 0) is
when x"0" => O_DA <= reg(0) ;
when x"1" => O_DA <= "0000" & reg(1)(3 downto 0) ;
when x"2" => O_DA <= reg(2) ;
when x"3" => O_DA <= "0000" & reg(3)(3 downto 0) ;
when x"4" => O_DA <= reg(4) ;
when x"5" => O_DA <= "0000" & reg(5)(3 downto 0) ;
when x"6" => O_DA <= "000" & reg(6)(4 downto 0) ;
when x"7" => O_DA <= reg(7) ;
when x"8" => O_DA <= "000" & reg(8)(4 downto 0) ;
when x"9" => O_DA <= "000" & reg(9)(4 downto 0) ;
when x"A" => O_DA <= "000" & reg(10)(4 downto 0) ;
when x"B" => O_DA <= reg(11);
when x"C" => O_DA <= reg(12);
when x"D" => O_DA <= "0000" & reg(13)(3 downto 0);
when x"E" => if (reg(7)(6) = '0') then -- input
O_DA <= ioa_inreg;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -