📄 do_all.m
字号:
function do_all(config_file)
%%% Top-level script for ICCV short course demos
%%% Overall routine that does everything, call this with
%%% a configuration file and it will run each subsection of the scheme in
%%% turn. See the comments in each do_ routine for details of what it does
%%% ALL settings for the experiment should be held in the configuration
%%% file. When first running the code, please ensure all paths within the
%%% configuration file are correct.
%% Platform requirements: The currentl implementation only runs under 32-bit Linux
%% as the implementation of SIFT uses a Linux binary from
%% Krystian Mikolajczyk (km@robots.ox.ac.uk). The rest of the code will
%% run fine under Windows, so you will need alternative code to use in place
%% of the SIFT descriptor binary if you intend to use it under
%% Windows. Note that in the demos shown at ICCV, we copied the
%% interest_point files onto our Windows laptops, having run the SIFT
%% descriptor code on Linux machines.
%% Software requirements: Matlab
%% Image Processing toolbox
%%% R.Fergus (fergus@csail.mit.edu) 03/10/05.
%%% run configuration script robustly to get EXPERIMENT_TYPE
%%% this tells if we are doing plsa or a bag or words or a parts and
%%% structure experiment etc.
try
eval(config_file);
catch
end
if strcmp(EXPERIMENT_TYPE,'plsa')
%%% generate random indices for training and test frames
do_random_indices(config_file);
%%% copy & resize images into experiment subdir
do_preprocessing(config_file);
%%% run interest operator over images
do_interest_operator(config_file);
%%% obtain representation of interest points
do_representation(config_file);
%%% form appearance codebook
do_form_codebook(config_file);
%%% VQ appearance of regions
do_vq(config_file);
%%% run plsa to learn model
do_plsa(config_file);
%%% test model
do_plsa_evaluation(config_file);
elseif strcmp(EXPERIMENT_TYPE,'naive_bayes')
%%% generate random indices for trainig and test frames
do_random_indices(config_file);
%%% copy & resize images into experiment subdir
do_preprocessing(config_file);
%%% run interest operator over images
do_interest_operator(config_file);
%%% obtain representation of interest points
do_representation(config_file);
%%% form appearance codebook
do_form_codebook(config_file);
%%% VQ appearance of regions
do_vq(config_file);
%%% run plsa to learn model
do_naive_bayes(config_file);
%%% test model
do_naive_bayes_evaluation(config_file);
elseif strcmp(EXPERIMENT_TYPE,'parts_structure')
%%% generate random indices for trainig and test frames
do_random_indices(config_file);
%%% copy & resize images into experiment subdir
do_preprocessing(config_file);
%%% manually click on training images to build model
%%% N.B. REQUIRES USER INTERACTION
do_manual_train_parts_structure(config_file);
%%% run appearance filters from model over the image.
do_part_filtering(config_file);
%%% evaluate model using interest points
do_test_parts_structure(config_file);
elseif strcmp(EXPERIMENT_TYPE,'parts_structure_efficient')
%%% generate random indices for trainig and test frames
do_random_indices(config_file);
%%% copy & resize images into experiment subdir
do_preprocessing(config_file);
%%% manually click on training images to build model
%%% N.B. REQUIRES USER INTERACTION
do_manual_train_parts_structure(config_file);
%%% run appearance filters from model over the image.
do_part_filtering(config_file);
%%% evaluate model using efficient methods of Felzenswalb and Huttenlocher
do_test_efficient(config_file);
else
error('Unknown experiment type');
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -