⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 roc.m

📁 一个学习自然场景类别的贝叶斯模型、基于“词袋”模型的目标分类。来源于Feifei Li的论文。是近年来的目标识别模型热点之一。
💻 M
字号:
function [ P, OP, A, T ] = roc ( X )%  function [ P, OP, T ] = roc ( X )%%  Input data:%%  	X	N x 2	The first column contains the score, the second column contains %			the labels. Noise is labeled with 0, signal is labeled with k > 0.%  Output data:%%       P       2 x N+1   x and y coords of curve...%       OP      error at equal error rate (intersection with curve diagonal)%       A       area under curve %       T       threshold at equal error% M. Weber, California Institute of Technology, 2000.    N_SAMPLES = size(X, 1);N_SIGNAL  = length(find(X(:, 2)));N_NOISE   = N_SAMPLES - N_SIGNAL;[D, I] = sort(rand(N_SAMPLES, 1));X = X(I, :);[D, I] = sort(X(:, 1));X = flipud(X(I, :));P = cumsum([ (X(:, 2) > 0) / N_SIGNAL, (X(:, 2) == 0) / N_NOISE ]);% Compute area under curvenoiseIdx = find(~X(:, 2));A = sum(P(noiseIdx, 1)) / N_NOISE;P = fliplr(P);% Find intersection point with diagonal[dum idx] = min(abs(P(:, 1) - (1 - P(:, 2))));OP = P(idx, 2);% Get thresholdT = 0.5 * (X(idx, 1) + X(max(1, idx + 1), 1));

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -