⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vgg_kmeans.m

📁 一个学习自然场景类别的贝叶斯模型、基于“词袋”模型的目标分类。来源于Feifei Li的论文。是近年来的目标识别模型热点之一。
💻 M
字号:
function [CX, sse] = vgg_kmeans(X, nclus, varargin)% VGG_KMEANS    initialize K-means clustering%               [CX, sse] = vgg_kmeans(X, nclus, optname, optval, ...)%%               - X: input points (one per column)%               - nclus: number of clusters%               - opts (defaults):%                    maxiters (inf): maxmimum number of iterations%                    mindelta (eps): minimum change in SSE per iteration%                       verbose (1): 1=print progress%%               - CX: cluster centers%               - sse: SSE% Author: Mark Everingham <me@robots.ox.ac.uk>% Date: 13 Jan 03opts = struct('maxiters', inf, 'mindelta', eps, 'verbose', 1);if nargin > 2    opts=vgg_argparse(opts,varargin);endperm=randperm(size(X,2));CX=X(:,perm(1:nclus));sse0 = inf;iter = 0;while iter < opts.maxiters    tic;        [CX, sse] = vgg_kmiter(X, CX);        t=toc;    if opts.verbose        fprintf('iter %d: sse = %g (%g secs)\n', iter, sse, t)    end        if sse0-sse < opts.mindelta        break    end    sse0=sse;    iter=iter+1;        end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -