📄 fisher.asv
字号:
clc;
clear all;
%load train set
load maleTrain
load femaleTrain
%define prior-probability
Pmale = 0.5;
Pfemale = 1-Pmale;
[Rmale,Cmale] = size(male);
[Rfemale,Cfemale] = size(female);
%the mean vector
meanMale = sum(male)/Cmale;
meanFemale = sum(female)/Cfemale;
%define with-class scatter matrices of male and female
SmaleHeight = male(:,1)-meanMale(1);
SmaleWeight = male(:,2)-meanMale(2);
Smale = [SmaleHeight , SmaleWeight];
Smale = Smale' * Smale;
SfemaleHeight = female(:,1)-meanFemale(1);
SfemaleWeight = female(:,2)-meanFemale(2);
Sfemale = [SfemaleHeight , SfemaleWeight];
Sfemale = Sfemale' * Sfemale;
%define with-class scatter matrices of human being
Sw = Pmale*Smale + Pfemale*Sfemale;
%define between-class scatter matrices
Sb = Pmale*Pfemale*(meanMale-meanFemale)*(meanMale-meanFemale)';
%compute the optimal weight vector solution
Wopt = inv(Sw)*(meanMale-meanFemale)';
%define the threshold
%y0 = 0 ;
y0 = Psum(male * Wopt)/50 +sum(female * Wopt)/50
%load test set
%训练集描述,第三列表示性别,0为女,1为男
%load test1
load test1
out1 = test1(:,[1,2]) * Wopt;
[Rout1,Cout1] = size(out1);
for i = 1:Rout1
if(out1(i)>=y0)
out1(i) = 1;
else
out1(i) = 0;
end
if(out1(i) == test1(i,3))
display('true');
trueTable1(i) = 1;
else
display('false');
trueTable1(i) = 0;
end
end
%load test2
load test2
out2 = test2(:,[1,2]) * Wopt;
[Rout2,Cout2] = size(out2);
for i = 1:Rout2
if(out2(i)>=y0)
out2(i) = 1;
else
out2(i) = 0;
end
if(out2(i) == test2(i,3))
display('true');
trueTable2(i) = 1;
else
display('false');
trueTable2(i) = 0;
end
end
%plot the true table
figure;
stem(trueTable1,'r');
axis([0,Rout1,0,1.5]);
title('test1在fisher准则下判断的结果');
legend('输出结果的正确率,1表示判断正确,0表示判断错误');
figure;
stem(trueTable2,'r');
axis([0,Rout2,0,1.5]);
title('test2在fisher准则下判断的结果');
legend('输出结果的正确率,1表示判断正确,0表示判断错误');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -