📄 untitled.asv
字号:
N=2000
K=12
d=2
angle = pi*(1.5*rand(1,N/2)-1); height = 5*rand(1,N)
X = [[cos(angle), -cos(angle)]; height;[ sin(angle), 2-sin(angle)]]
function [Y] = lle(X,K,d)
[D,N] = size(X)
fprintf(1,'LLE running on %d points in %d dimensions\n',N,D)
% STEP1: COMPUTE PAIRWISE DISTANCES & FIND NEIGHBORS
fprintf(1,'-->Finding %d nearest neighbours.\n',K)
X2 = sum(X.^2,1)
distance = repmat(X2,N,1)+repmat(X2',1,N)-2*X'*X
[sorted,index] = sort(distance)
neighborhood = index(2:(1+K),:)
% STEP2: SOLVE FOR RECONSTRUCTION WEIGHTS
fprintf(1,'-->Solving for reconstruction weights.\n')
if(K>D)
fprintf(1,' [note: K>D; regularization will be used]\n')
tol=1e-3; % regularlizer in case constrained fits are ill conditioned
else
tol=0
end
W = zeros(K,N)
for ii=1:N
z = X(:,neighborhood(:,ii))-repmat(X(:,ii),1,K)
C = z'*z
C = C + eye(K,K)*tol*trace(C)
W(:,ii) = C\ones(K,1)
W(:,ii) = W(:,ii)/sum(W(:,ii))
end;
% STEP 3: COMPUTE EMBEDDING FROM EIGENVECTS OF COST MATRIX M=(I-W)'(I-W)
fprintf(1,'-->Computing embedding.\n')
% M=eye(N,N); % use a sparse matrix with storage for 4KN nonzero elements
M = sparse(1:N,1:N,ones(1,N),N,N,4*K*N)
for ii=1:N
w = W(:,ii)
jj = neighborhood(:,ii)
M(ii,jj) = M(ii,jj) - w'
M(jj,ii) = M(jj,ii) - w
M(jj,jj) = M(jj,jj) + w*w'
end
% CALCULATION OF EMBEDDING
options.disp = 0; options.isreal = 1; options.issym = 1
[Y,eigenvals] = eigs(M,d+1,0,options);
Y = Y(:,2:d+1)'*sqrt(N); % bottom evect is [1,1,1,1...] with eval 0
fprintf(1,'Done.\n')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% other possible regularizers for K>D
% C = C + tol*diag(diag(C)); % regularlization
% C = C + eye(K,K)*tol*trace(C)*K; % regularlization
Y=lle(X,K,d)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -