📄 lpshape.m
字号:
function lpshape(wl,bdb,uL0,vL0,delay,numC0,denC0,phase)
% LPSHAPE Controller design environment for continuous-time linear systems.
% LPSHAPE produces a continuous-time Nichols plot using default
% settings.
%
% LPSHAPE(W,BDB,NUMP0,DENP0,DELAY,NUMC0,DENC0,PHS) produces the
% Nichols plot design environment with the nominal plant transfer
% function P0(s)=NUMP0(s)/DENP0(s) where NUMP0 and DENP0 contain
% the polynomial coefficients in descending powers of s using the
% user-supplied frequency vector W. BDB contains the QFT bounds,
% NUMC0 and DENC0 contain the coefficients for the initial
% controller, and PHS is the user-defined phase vector.
%
% Default values can be used for many of the inputs. For example,
% LPSHAPE(W,[],P0,[]) produces the nichols plot as above,
% yet without the bounds and P0 is now in complex number format.
% W corresponds to the frequency vector used to compute P0. The
% rest of the inputs are set to their defaults. DELAY (0),
% NUMC0 (1), DENC0 (1), PHS (0:-5:360).
%
% See also DLPSHAPE, PFSHAPE, DPFSHAPE, PUTQFT.
% Author: Craig Borghesani
% Date: 9/5/93
% Revised: 2/17/96 10:11 PM V1.1 updates
% Copyright (c) 1995-98 by The MathWorks, Inc.
% $Revision: 1.4 $
if nargin==0,
lpshpdef([],[],[],[],[],[],[],[]);
elseif nargin==1,
lpshpdef(wl,[],[],[],[],[],[],[]);
elseif nargin==2,
lpshpdef(wl,bdb,[],[],[],[],[],[]);
elseif nargin==4,
lpshpdef(wl,bdb,uL0,vL0,[],[],[],[]);
elseif nargin==5,
lpshpdef(wl,bdb,uL0,vL0,delay,[],[],[]);
elseif nargin==7,
lpshpdef(wl,bdb,uL0,vL0,delay,numC0,denC0,[]);
elseif nargin==8,
lpshpdef(wl,bdb,uL0,vL0,delay,numC0,denC0,phase);
else
error('Incorrect number of inputs');
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -