📄 f53xa_adc0_externalinput_mux.c
字号:
//-----------------------------------------------------------------------------
// F53xA_ADC0_ExternalInput_Mux.c
//-----------------------------------------------------------------------------
// Copyright 2007 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// This code example illustrates using the internal analog multiplexer to
// measure analog voltages on up to 8 different analog inputs. Results are
// printed to a PC terminal program via the UART.
//
// The inputs are sequentially scanned, beginning with input 1 (P1.0), up
// to input number <ANALOG_INPUTS>-1 based on the values in <PIN_TABLE>.
//
//
// ADC Settling Time Requirements, Sampling Rate:
// ----------------------------------------------
//
// The total sample time per input is comprised of an input setting time
// (Tsettle), followed by a conversion time (Tconvert):
//
// Tsample = Tsettle + Tconvert
//
// Settling and conversion times may overlap, as the ADC holds the value once
// conversion begins. This program takes advantage of this to increase the
// settling time above the minimum required. In other words, when
// converting the value from analog input Ain(n), the input mux is switched
// over to the next input Ain(n+1) to begin settling.
//
// |---Settling Ain(n)---|=Conversion Ain(n)=|
// |---Settling Ain(n+1)---|=Conversion Ain(n+1)=|
// |---Settling Ain(n+2)---|
// ISR: Timer 2 ^ ^ ^
// ISR: ADC0 ^ ^
//
// The ADC input voltage must be allowed adequate time to settle before the
// conversion is made. This settling depends on the external source
// impedance, internal mux impedance, and internal capacitance.
// Settling time is given by:
//
// | 2^n |
// Tsettle = ln | --- | * Rtotal * Csample
// | SA |
//
// In this application, assume a 100kohm potentiometer as the voltage divider.
// The expression evaluates to:
//
// | 2^12 |
// Tsettle = ln | ---- | * 105e3 * 12e-12 = 12.2uS
// | 0.25 |
//
// In addition, one must allow at least 1.5 us after changing analog MUX
// inputs or PGA settings. The settling time in this example, then, is
// dictated by the large external source resistance.
//
// The conversion is 16 periods of the SAR clock. At 2.5 MHz,
// this time is 16 * 400nS = 6.4 uS.
//
//
// Tsample, minimum = Tsettle + Tconvert
// = 12.2uS + 6.4uS
// = 18.6 uS
//
// Timer2 is set to change the MUX input and start a conversion every 100 us
// to give the ADC plenty of time to settle between conversions.
//
// General:
// --------
//
// The system is clocked using the internal 24.5MHz oscillator. Results are
// printed to the UART from a loop with the rate set by a delay based on
// Timer0. This loop periodically reads the ADC value from a global array,
// <RESULT>.
//
// The ADC makes repeated measurements at 20 us intervals based on Timer2.
// The end of each ADC conversion initiates an interrupt which calls an
// averaging function. <INT_DEC> samples are averaged, then the Result
// values updated.
//
// For each power of 4 of <INT_DEC>, you gain 1 bit of effective resolution.
// For example, <INT_DEC> = 256 gain you 4 bits of resolution: 4^4 = 256.
//
// The ADC input multiplexer is set for a single-ended input. The example
// sequentially scans through the inputs, starting at P1.0. <ANALOG_INPUTS>
// inputs are read. The amplifier is set for unity gain so a voltage range of
// 0 to Vref (2.2V) may be measured. Although voltages up to Vregin may be
// applied without damaging the device, only the range 0 to Vref may be
// measured by the ADC.
//
// A 100 kohm potentiometer may be connected as a voltage divider between
// VREF and AGND as shown below:
//
// ---------
// |
// o| AGND ----|
// o| VREF ----|<-|
// o| P1.x | |
// o| | |
// o| --------
// o|
// o|
// o|
// |
// ---------
//
// How To Test:
//
// 1) Download code to the A 'F530 device on the C8051F530A-TB development
// board.
// 2) Connect the USB cable from the PC to the target board (the USB ACTIVE
// LED should light up if the CP210x drivers are properly installed).
// 3) Ensure the UART jumpers are populated on HDR4.
// 4) Connect P1.0 to the "A" Side header by populating J12.
// 4) On the PC, open HyperTerminal (or any other terminal program) and connect
// to the COM port at <BAUDRATE> and 8-N-1.
// 5) Connect the potentiometer to any of the P1.2 by J8 and connecting J6 to
// pins on the "A" side header.
// 6) HyperTerminal will print the voltage measured by the device if
// everything is working properly. Note that some of the analog inputs are
// floating and will return nonzero values.
//
//
// Target: C8051F520A/F530A (C8051F530A TB)
// Tool chain: Keil C51 7.50 / Keil EVAL C51
// Command Line: None
//
// Release 1.1
// -Updated for C8051F530A TB (TP)
// -29 JAN 2008
//
// Release 1.0
// -Initial Revision (SM / TP)
// -19 OCT 2006
//
//-----------------------------------------------------------------------------
// Includes
//-----------------------------------------------------------------------------
#include "compiler_defs.h"
#include "C8051F520A_defs.h" // SFR declarations
#include <stdio.h>
//-----------------------------------------------------------------------------
// Global CONSTANTS
//-----------------------------------------------------------------------------
#define SYSCLK 24500000 // SYSCLK frequency in Hz
#define BAUDRATE 115200 // Baud rate of UART in bps
#define ANALOG_INPUTS 5 // Number of AIN pins to measure
#define INT_DEC 256 // Integrate and decimate ratio
//-----------------------------------------------------------------------------
// Function PROTOTYPES
//-----------------------------------------------------------------------------
void Oscillator_Init (void);
void Port_Init (void);
void Timer2_Init(void);
void ADC0_Init(void);
void UART0_Init (void);
void Timer0_wait(int ms);
//-----------------------------------------------------------------------------
// Global Variables
//-----------------------------------------------------------------------------
long RESULT[ANALOG_INPUTS]; // ADC0 decimated value, one for each
// analog input
// The <PIN_MUX_TABLE> values are the values to be written to the ADC0MX
// register to select the P1.<PIN_TABLE> port pins.
// For the 'F53xA, the ADC0MX settings correspond to the following port pins:
//
// ADC0MX Port Pin
// 0x08 P1.0
// 0x09 P1.1
// 0x0A P1.2
// 0x0B P1.3
// 0x0C P1.4
//
unsigned char idata PIN_TABLE[ANALOG_INPUTS] = {0,1,2,3,4};
unsigned char idata PIN_MUX_TABLE[ANALOG_INPUTS] = {8,9,10,11,12};
unsigned char AMUX_INPUT = 0; // Index of analog MUX inputs
//-----------------------------------------------------------------------------
// MAIN Routine
//-----------------------------------------------------------------------------
void main (void)
{
unsigned char i;
unsigned long measurement;
PCA0MD &= ~0x40; // WDTE = 0 (clear watchdog timer
// enable)
Oscillator_Init (); // Initialize system clock to
// 24.5MHz
Port_Init (); // Initialize crossbar and GPIO
Timer2_Init(); // Init Timer2 to generate
// overflows to trigger ADC
UART0_Init(); // Initialize UART0 for printf's
ADC0_Init(); // Initialize ADC0
EA = 1; // Enable global interrupts
while (1)
{
EA = 0; // Disable interrupts
printf("\f");
for(i = 0; i < ANALOG_INPUTS; i++)
{
// The 12-bit ADC value is averaged across INT_DEC measurements.
// The result is then stored in RESULT, and is right-justified
// The measured voltage applied to the port pins is then:
//
// Vref (mV)
// measurement (mV) = --------------- * Result (bits)
// (2^12)-1 (bits)
measurement = RESULT[i] * 2200 / 4095;
printf("P1.%bu voltage: %4ld mV\n",PIN_TABLE[i],measurement);
}
EA = 1; // Re-enable interrupts
Timer0_wait(20); // Wait before displaying new values
}
}
//-----------------------------------------------------------------------------
// Initialization Subroutines
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Oscillator_Init
//-----------------------------------------------------------------------------
//
// Return Value : None
// Parameters : None
//
// This function initializes the system clock to use the internal oscillator
// at 24.5 MHz.
//
//-----------------------------------------------------------------------------
void Oscillator_Init (void)
{
OSCICN = 0x87; // Set the internal oscillator to
// 24.5 MHz
}
//-----------------------------------------------------------------------------
// Port_Init
//-----------------------------------------------------------------------------
//
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -