⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sift.c

📁 opencv下的图像sift特征提取以及匹配
💻 C
📖 第 1 页 / 共 3 页
字号:
Calculates the gradient magnitude and orientation at a given pixel.@param img image@param r pixel row@param c pixel col@param mag output as gradient magnitude at pixel (r,c)@param ori output as gradient orientation at pixel (r,c)@return Returns 1 if the specified pixel is a valid one and sets mag and	ori accordingly; otherwise returns 0*/int calc_grad_mag_ori( IplImage* img, int r, int c, double* mag, double* ori ){	double dx, dy;	if( r > 0  &&  r < img->height - 1  &&  c > 0  &&  c < img->width - 1 )	{		dx = pixval32f( img, r, c+1 ) - pixval32f( img, r, c-1 );		dy = pixval32f( img, r-1, c ) - pixval32f( img, r+1, c );		*mag = sqrt( dx*dx + dy*dy );		*ori = atan2( dy, dx );		return 1;	}	else		return 0;}/*Gaussian smooths an orientation histogram.@param hist an orientation histogram@param n number of bins*/void smooth_ori_hist( double* hist, int n ){	double prev, tmp, h0 = hist[0];	int i;	prev = hist[n-1];	for( i = 0; i < n; i++ )	{		tmp = hist[i];		hist[i] = 0.25 * prev + 0.5 * hist[i] + 			0.25 * ( ( i+1 == n )? h0 : hist[i+1] );		prev = tmp;	}}/*Finds the magnitude of the dominant orientation in a histogram@param hist an orientation histogram@param n number of bins@return Returns the value of the largest bin in hist*/double dominant_ori( double* hist, int n ){	double omax;	int maxbin, i;	omax = hist[0];	maxbin = 0;	for( i = 1; i < n; i++ )		if( hist[i] > omax )		{			omax = hist[i];			maxbin = i;		}	return omax;}/*Interpolates a histogram peak from left, center, and right values*/#define interp_hist_peak( l, c, r ) ( 0.5 * ((l)-(r)) / ((l) - 2.0*(c) + (r)) )/*Adds features to an array for every orientation in a histogram greater thana specified threshold.@param features new features are added to the end of this array@param hist orientation histogram@param n number of bins in hist@param mag_thr new features are added for entries in hist greater than this@param feat new features are clones of this with different orientations*/void add_good_ori_features( CvSeq* features, double* hist, int n,						   double mag_thr, struct feature* feat ){	struct feature* new_feat;	double bin, PI2 = CV_PI * 2.0;	int l, r, i;	for( i = 0; i < n; i++ )	{		l = ( i == 0 )? n - 1 : i-1;		r = ( i + 1 ) % n;		if( hist[i] > hist[l]  &&  hist[i] > hist[r]  &&  hist[i] >= mag_thr )		{			bin = i + interp_hist_peak( hist[l], hist[i], hist[r] );			bin = ( bin < 0 )? n + bin : ( bin >= n )? bin - n : bin;			new_feat = clone_feature( feat );			new_feat->ori = ( ( PI2 * bin ) / n ) - CV_PI;			cvSeqPush( features, new_feat );			free( new_feat );		}	}}/*Makes a deep copy of a feature@param feat feature to be cloned@return Returns a deep copy of feat*/struct feature* clone_feature( struct feature* feat ){	struct feature* new_feat;	struct detection_data* ddata;	new_feat = new_feature();	ddata = feat_detection_data( new_feat );	memcpy( new_feat, feat, sizeof( struct feature ) );	memcpy( ddata, feat_detection_data(feat), sizeof( struct detection_data ) );	new_feat->feature_data = ddata;	return new_feat;}/*Computes feature descriptors for features in an array.  Based on Section 6of Lowe's paper.@param features array of features@param gauss_pyr Gaussian scale space pyramid@param d width of 2D array of orientation histograms@param n number of bins per orientation histogram*/void compute_descriptors( CvSeq* features, IplImage*** gauss_pyr, int d, int n){	struct feature* feat;	struct detection_data* ddata;	double*** hist;	int i, k = features->total;	for( i = 0; i < k; i++ )	{		feat = CV_GET_SEQ_ELEM( struct feature, features, i );		ddata = feat_detection_data( feat );		hist = descr_hist( gauss_pyr[ddata->octv][ddata->intvl], ddata->r,			ddata->c, feat->ori, ddata->scl_octv, d, n );		hist_to_descr( hist, d, n, feat );		release_descr_hist( &hist, d );	}}/*Computes the 2D array of orientation histograms that form the featuredescriptor.  Based on Section 6.1 of Lowe's paper.@param img image used in descriptor computation@param r row coord of center of orientation histogram array@param c column coord of center of orientation histogram array@param ori canonical orientation of feature whose descr is being computed@param scl scale relative to img of feature whose descr is being computed@param d width of 2d array of orientation histograms@param n bins per orientation histogram@return Returns a d x d array of n-bin orientation histograms.*/double*** descr_hist( IplImage* img, int r, int c, double ori,					 double scl, int d, int n ){	double*** hist;	double cos_t, sin_t, hist_width, exp_denom, r_rot, c_rot, grad_mag,		grad_ori, w, rbin, cbin, obin, bins_per_rad, PI2 = 2.0 * CV_PI;	int radius, i, j;	hist = calloc( d, sizeof( double** ) );	for( i = 0; i < d; i++ )	{		hist[i] = calloc( d, sizeof( double* ) );		for( j = 0; j < d; j++ )			hist[i][j] = calloc( n, sizeof( double ) );	}	cos_t = cos( ori );	sin_t = sin( ori );	bins_per_rad = n / PI2;	exp_denom = d * d * 0.5;	hist_width = SIFT_DESCR_SCL_FCTR * scl;	radius = hist_width * sqrt(2) * ( d + 1.0 ) * 0.5 + 0.5;	for( i = -radius; i <= radius; i++ )		for( j = -radius; j <= radius; j++ )		{			/*			Calculate sample's histogram array coords rotated relative to ori.			Subtract 0.5 so samples that fall e.g. in the center of row 1 (i.e.			r_rot = 1.5) have full weight placed in row 1 after interpolation.			*/			c_rot = ( j * cos_t - i * sin_t ) / hist_width;			r_rot = ( j * sin_t + i * cos_t ) / hist_width;			rbin = r_rot + d / 2 - 0.5;			cbin = c_rot + d / 2 - 0.5;			if( rbin > -1.0  &&  rbin < d  &&  cbin > -1.0  &&  cbin < d )				if( calc_grad_mag_ori( img, r + i, c + j, &grad_mag, &grad_ori ))				{					grad_ori -= ori;					while( grad_ori < 0.0 )						grad_ori += PI2;					while( grad_ori >= PI2 )						grad_ori -= PI2;					obin = grad_ori * bins_per_rad;					w = exp( -(c_rot * c_rot + r_rot * r_rot) / exp_denom );					interp_hist_entry( hist, rbin, cbin, obin, grad_mag * w, d, n );				}		}	return hist;}/*Interpolates an entry into the array of orientation histograms that formthe feature descriptor.@param hist 2D array of orientation histograms@param rbin sub-bin row coordinate of entry@param cbin sub-bin column coordinate of entry@param obin sub-bin orientation coordinate of entry@param mag size of entry@param d width of 2D array of orientation histograms@param n number of bins per orientation histogram*/void interp_hist_entry( double*** hist, double rbin, double cbin,					   double obin, double mag, int d, int n ){	double d_r, d_c, d_o, v_r, v_c, v_o;	double** row, * h;	int r0, c0, o0, rb, cb, ob, r, c, o;	r0 = cvFloor( rbin );	c0 = cvFloor( cbin );	o0 = cvFloor( obin );	d_r = rbin - r0;	d_c = cbin - c0;	d_o = obin - o0;	/*	The entry is distributed into up to 8 bins.  Each entry into a bin	is multiplied by a weight of 1 - d for each dimension, where d is the	distance from the center value of the bin measured in bin units.	*/	for( r = 0; r <= 1; r++ )	{		rb = r0 + r;		if( rb >= 0  &&  rb < d )		{			v_r = mag * ( ( r == 0 )? 1.0 - d_r : d_r );			row = hist[rb];			for( c = 0; c <= 1; c++ )			{				cb = c0 + c;				if( cb >= 0  &&  cb < d )				{					v_c = v_r * ( ( c == 0 )? 1.0 - d_c : d_c );					h = row[cb];					for( o = 0; o <= 1; o++ )					{						ob = ( o0 + o ) % n;						v_o = v_c * ( ( o == 0 )? 1.0 - d_o : d_o );						h[ob] += v_o;					}				}			}		}	}}/*Converts the 2D array of orientation histograms into a feature's descriptorvector.@param hist 2D array of orientation histograms@param d width of hist@param n bins per histogram@param feat feature into which to store descriptor*/void hist_to_descr( double*** hist, int d, int n, struct feature* feat ){	int int_val, i, r, c, o, k = 0;	for( r = 0; r < d; r++ )		for( c = 0; c < d; c++ )			for( o = 0; o < n; o++ )				feat->descr[k++] = hist[r][c][o];	feat->d = k;	normalize_descr( feat );	for( i = 0; i < k; i++ )		if( feat->descr[i] > SIFT_DESCR_MAG_THR )			feat->descr[i] = SIFT_DESCR_MAG_THR;	normalize_descr( feat );	/* convert floating-point descriptor to integer valued descriptor */	for( i = 0; i < k; i++ )	{		int_val = SIFT_INT_DESCR_FCTR * feat->descr[i];		feat->descr[i] = MIN( 255, int_val );	}}/*Normalizes a feature's descriptor vector to unitl length@param feat feature*/void normalize_descr( struct feature* feat ){	double cur, len_inv, len_sq = 0.0;	int i, d = feat->d;	for( i = 0; i < d; i++ )	{		cur = feat->descr[i];		len_sq += cur*cur;	}	len_inv = 1.0 / sqrt( len_sq );	for( i = 0; i < d; i++ )		feat->descr[i] *= len_inv;}/*Compares features for a decreasing-scale ordering.  Intended for use withCvSeqSort@param feat1 first feature@param feat2 second feature@param param unused@return Returns 1 if feat1's scale is greater than feat2's, -1 if vice versa,and 0 if their scales are equal*/int feature_cmp( void* feat1, void* feat2, void* param ){	struct feature* f1 = (struct feature*) feat1;	struct feature* f2 = (struct feature*) feat2;	if( f1->scl < f2->scl )		return 1;	if( f1->scl > f2->scl )		return -1;	return 0;}/*De-allocates memory held by a descriptor histogram@param hist pointer to a 2D array of orientation histograms@param d width of hist*/void release_descr_hist( double**** hist, int d ){	int i, j;	for( i = 0; i < d; i++)	{		for( j = 0; j < d; j++ )			free( (*hist)[i][j] );		free( (*hist)[i] );	}	free( *hist );	*hist = NULL;}/*De-allocates memory held by a scale space pyramid@param pyr scale space pyramid@param octvs number of octaves of scale space@param n number of images per octave*/void release_pyr( IplImage**** pyr, int octvs, int n ){	int i, j;	for( i = 0; i < octvs; i++ )	{		for( j = 0; j < n; j++ )			cvReleaseImage( &(*pyr)[i][j] );		free( (*pyr)[i] );	}	free( *pyr );	*pyr = NULL;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -